{"title":"Hyperspectral Image Classification Using Spectral-Spatial Dual Random Fields With Gaussian and Markov Processes","authors":"Yaqiu Zhang;Lizhi Liu;Xinnian Yang","doi":"10.1109/JSTARS.2025.3528115","DOIUrl":null,"url":null,"abstract":"This article presents a novel hyperspectral image (HSI) classification approach that integrates the sparse inducing variational Gaussian process (SIVGP) with a spatially adaptive Markov random field (SAMRF), termed G-MDRF. Variational inference is employed to obtain a sparse approximation of the posterior distribution, modeling the spectral field within the latent function space. Subsequently, SAMRF is utilized to model the spatial prior within the function space, while the alternating direction method of multipliers (ADMM) is employed to enhance computational efficiency. Experimental results on three datasets with varying complexity show that the proposed algorithm improves computational efficiency by approximately 152 times and accuracy by about 7%–26% compared to the current popular Gaussian process methods. Compared to classical random field methods, G-MDRF rapidly achieves a convergent solution with only one ten-thousandth to one hundred-thousandth of the iterations, improving accuracy by about 5%–18%. Particularly, when the number of classes in the dataset increases and the scene becomes more complex, the proposed method demonstrates a greater advantage in both computational efficiency and classification accuracy compared to existing methods.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"18 ","pages":"4199-4212"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10836880","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10836880/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This article presents a novel hyperspectral image (HSI) classification approach that integrates the sparse inducing variational Gaussian process (SIVGP) with a spatially adaptive Markov random field (SAMRF), termed G-MDRF. Variational inference is employed to obtain a sparse approximation of the posterior distribution, modeling the spectral field within the latent function space. Subsequently, SAMRF is utilized to model the spatial prior within the function space, while the alternating direction method of multipliers (ADMM) is employed to enhance computational efficiency. Experimental results on three datasets with varying complexity show that the proposed algorithm improves computational efficiency by approximately 152 times and accuracy by about 7%–26% compared to the current popular Gaussian process methods. Compared to classical random field methods, G-MDRF rapidly achieves a convergent solution with only one ten-thousandth to one hundred-thousandth of the iterations, improving accuracy by about 5%–18%. Particularly, when the number of classes in the dataset increases and the scene becomes more complex, the proposed method demonstrates a greater advantage in both computational efficiency and classification accuracy compared to existing methods.
期刊介绍:
The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.