Jacob Beck;Lukas Malte Kemeter;Konrad Dürrbeck;Mohamed Hesham Ibrahim Abdalla;Frauke Kreuter
{"title":"Toward Integrating ChatGPT Into Satellite Image Annotation Workflows: A Comparison of Label Quality and Costs of Human and Automated Annotators","authors":"Jacob Beck;Lukas Malte Kemeter;Konrad Dürrbeck;Mohamed Hesham Ibrahim Abdalla;Frauke Kreuter","doi":"10.1109/JSTARS.2025.3528192","DOIUrl":null,"url":null,"abstract":"High-quality annotations are a critical success factor for machine learning (ML) applications. To achieve this, we have traditionally relied on human annotators, navigating the challenges of limited budgets and the varying task-specific expertise, costs, and availability. Since the emergence of large language models (LLMs), their popularity for generating automated annotations has grown, extending possibilities and complexity of designing an efficient annotation strategy. Increasingly, computer vision capabilities have been integrated into general-purpose LLMs like ChatGPT. This raises the question of how effectively LLMs can be used in satellite image annotation tasks and how they compare to traditional annotator types. This study presents a comprehensive investigation and comparison of various human and automated annotators for image classification. We evaluate the feasibility and economic competitiveness of using the ChatGPT4-V model for a complex land usage annotation task and compare it with alternative human annotators. A set of satellite images is annotated by a domain expert and 15 additional human and automated annotators, differing in expertise and costs. Our analyzes examine the annotation quality loss between the expert and other annotators. This comparison is conducted through, first, descriptive analyzes, second, fitting linear probability models, and third, comparing F1-scores. Ultimately, we simulate annotation strategies where samples are split according to an automatically assigned certainty score. Routing low-certainty images to human annotators can cut total annotation costs by over 50% with minimal impact on label quality. We discuss implications regarding the economic competitiveness of annotation strategies, prompt engineering, and the task-specificity of expertise.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"18 ","pages":"4366-4381"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10841407","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10841407/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
High-quality annotations are a critical success factor for machine learning (ML) applications. To achieve this, we have traditionally relied on human annotators, navigating the challenges of limited budgets and the varying task-specific expertise, costs, and availability. Since the emergence of large language models (LLMs), their popularity for generating automated annotations has grown, extending possibilities and complexity of designing an efficient annotation strategy. Increasingly, computer vision capabilities have been integrated into general-purpose LLMs like ChatGPT. This raises the question of how effectively LLMs can be used in satellite image annotation tasks and how they compare to traditional annotator types. This study presents a comprehensive investigation and comparison of various human and automated annotators for image classification. We evaluate the feasibility and economic competitiveness of using the ChatGPT4-V model for a complex land usage annotation task and compare it with alternative human annotators. A set of satellite images is annotated by a domain expert and 15 additional human and automated annotators, differing in expertise and costs. Our analyzes examine the annotation quality loss between the expert and other annotators. This comparison is conducted through, first, descriptive analyzes, second, fitting linear probability models, and third, comparing F1-scores. Ultimately, we simulate annotation strategies where samples are split according to an automatically assigned certainty score. Routing low-certainty images to human annotators can cut total annotation costs by over 50% with minimal impact on label quality. We discuss implications regarding the economic competitiveness of annotation strategies, prompt engineering, and the task-specificity of expertise.
期刊介绍:
The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.