Shiping WEI , Zhenqiang XIE , Yanling ZHAO , Quanzhi WANG , Yuanhua WANG , Jiayin ZHAO , Kaijun YIN , Zhihao ZHU , Yang LIU , Meng WU , Zhongpei LI
{"title":"Potential inhibition of humic acid against soil-borne pathogenic fungi: A review","authors":"Shiping WEI , Zhenqiang XIE , Yanling ZHAO , Quanzhi WANG , Yuanhua WANG , Jiayin ZHAO , Kaijun YIN , Zhihao ZHU , Yang LIU , Meng WU , Zhongpei LI","doi":"10.1016/j.pedsph.2024.11.007","DOIUrl":null,"url":null,"abstract":"<div><div>Green prevention and control management of soil-borne fungal diseases is a hot topic in agriculture, ecology, and the environment. It is an important way to effectively prevent and control soil-borne fungal diseases, solve soil degradation caused by continuous cropping obstacles, and fulfill the sustainable development of agriculture through revealing the mechanisms of functional substances to develop highly effective soil amendments. Humic acid shows an inhibitory effect on soil-borne pathogenic fungi, such as <em>Fusarium oxysporum</em>, <em>Choanephora cucurbitarum</em>, and <em>Rhizoctonia solani</em>, with the inhibition rate exceeding 80%. The molecular and elemental composition and contents of –COOH, phenolic C, methoxy group C, carboxyl C, aromatic C–O, anomeric C, and other functional groups of humic acid have been inferred to be responsible for its inhibitory effects on pathogenic fungi in previous research. The inhibitory mechanisms mainly include cell physiological morphology, biochemical process reactions, and molecular signal transduction. This review systematically summarizes the chemical structure, fungistatic effects, variable characteristics, and inhibitory mechanisms of humic acid, aiming to provide a theoretical basis for the development of green and efficient prevention and control technologies for soil-borne fungal diseases.</div></div>","PeriodicalId":49709,"journal":{"name":"Pedosphere","volume":"35 1","pages":"Pages 33-41"},"PeriodicalIF":5.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pedosphere","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1002016024001097","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Green prevention and control management of soil-borne fungal diseases is a hot topic in agriculture, ecology, and the environment. It is an important way to effectively prevent and control soil-borne fungal diseases, solve soil degradation caused by continuous cropping obstacles, and fulfill the sustainable development of agriculture through revealing the mechanisms of functional substances to develop highly effective soil amendments. Humic acid shows an inhibitory effect on soil-borne pathogenic fungi, such as Fusarium oxysporum, Choanephora cucurbitarum, and Rhizoctonia solani, with the inhibition rate exceeding 80%. The molecular and elemental composition and contents of –COOH, phenolic C, methoxy group C, carboxyl C, aromatic C–O, anomeric C, and other functional groups of humic acid have been inferred to be responsible for its inhibitory effects on pathogenic fungi in previous research. The inhibitory mechanisms mainly include cell physiological morphology, biochemical process reactions, and molecular signal transduction. This review systematically summarizes the chemical structure, fungistatic effects, variable characteristics, and inhibitory mechanisms of humic acid, aiming to provide a theoretical basis for the development of green and efficient prevention and control technologies for soil-borne fungal diseases.
期刊介绍:
PEDOSPHERE—a peer-reviewed international journal published bimonthly in English—welcomes submissions from scientists around the world under a broad scope of topics relevant to timely, high quality original research findings, especially up-to-date achievements and advances in the entire field of soil science studies dealing with environmental science, ecology, agriculture, bioscience, geoscience, forestry, etc. It publishes mainly original research articles as well as some reviews, mini reviews, short communications and special issues.