Enhanced removal of heavy metals by wetland plant-microbiome symbiont: Prospect of potential strategies and mechanisms for environmental heavy metal regulation

IF 5.2 2区 农林科学 Q1 SOIL SCIENCE
Ling LIU , Xiaoyi FAN , Yuan HAN , Hongjie WANG
{"title":"Enhanced removal of heavy metals by wetland plant-microbiome symbiont: Prospect of potential strategies and mechanisms for environmental heavy metal regulation","authors":"Ling LIU ,&nbsp;Xiaoyi FAN ,&nbsp;Yuan HAN ,&nbsp;Hongjie WANG","doi":"10.1016/j.pedsph.2024.10.007","DOIUrl":null,"url":null,"abstract":"<div><div>Wetland plants and their related environmental interfaces are colonized by a wide range of microbial communities, and the symbiotic system of plants and microorganisms can interact and cooperate with each other, playing an important role in environmental remediation of metal pollution, which has garnered significant attention. The dominant communities of wetland plants still have high treatment performance and survival rate under pollution conditions. Many studies show that hyperaccumulating metallophytes have the capacity to accumulate heavy metal up to several times higher than the plants in sterile soil, due to the interaction of microbes within the rhizosphere. Thus, biotechnological efforts are being explored to modify plants for heavy metal phytoremediation and to improve the adaptation of wetland plants, endophytes, and rhizospheric microorganisms to adverse environment. New phytoremediation techniques and enhanced symbiosis technique for endophytic bacteria inoculation with high efficiency are being pursued and utilized in heavy metal phytoremediation in wetland systems. Therefore, in this review, we systematically summarized the interface characteristics of wetland systems and the interaction of symbionts, with emphasis on the enhanced removal potential and regulation mechanisms of heavy metals by plant-microbe symbiosis in wetland systems, along with the applications of plant-microbiomes for heavy metal remediation in wetlands. Moreover, we explored the remediation mechanisms of combined endogenic-ecophytic microorganisms for wetland systems. In recent research, the exogeneous bacteria drastically remodeled the rhizospheric microbiome and further improved the activity of rhizospheric functional enzymes, with the metal removal at the rhizospheric region reaching up to 95%. In order to increase the effectiveness of plant-microbiome engineering in addressing wetland environmental pollution, the significance of incorporating synergistic techniques and taking a variety of environmental factors was discussed.</div></div>","PeriodicalId":49709,"journal":{"name":"Pedosphere","volume":"35 1","pages":"Pages 116-136"},"PeriodicalIF":5.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pedosphere","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1002016024000985","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Wetland plants and their related environmental interfaces are colonized by a wide range of microbial communities, and the symbiotic system of plants and microorganisms can interact and cooperate with each other, playing an important role in environmental remediation of metal pollution, which has garnered significant attention. The dominant communities of wetland plants still have high treatment performance and survival rate under pollution conditions. Many studies show that hyperaccumulating metallophytes have the capacity to accumulate heavy metal up to several times higher than the plants in sterile soil, due to the interaction of microbes within the rhizosphere. Thus, biotechnological efforts are being explored to modify plants for heavy metal phytoremediation and to improve the adaptation of wetland plants, endophytes, and rhizospheric microorganisms to adverse environment. New phytoremediation techniques and enhanced symbiosis technique for endophytic bacteria inoculation with high efficiency are being pursued and utilized in heavy metal phytoremediation in wetland systems. Therefore, in this review, we systematically summarized the interface characteristics of wetland systems and the interaction of symbionts, with emphasis on the enhanced removal potential and regulation mechanisms of heavy metals by plant-microbe symbiosis in wetland systems, along with the applications of plant-microbiomes for heavy metal remediation in wetlands. Moreover, we explored the remediation mechanisms of combined endogenic-ecophytic microorganisms for wetland systems. In recent research, the exogeneous bacteria drastically remodeled the rhizospheric microbiome and further improved the activity of rhizospheric functional enzymes, with the metal removal at the rhizospheric region reaching up to 95%. In order to increase the effectiveness of plant-microbiome engineering in addressing wetland environmental pollution, the significance of incorporating synergistic techniques and taking a variety of environmental factors was discussed.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pedosphere
Pedosphere 环境科学-土壤科学
CiteScore
11.70
自引率
1.80%
发文量
147
审稿时长
5.0 months
期刊介绍: PEDOSPHERE—a peer-reviewed international journal published bimonthly in English—welcomes submissions from scientists around the world under a broad scope of topics relevant to timely, high quality original research findings, especially up-to-date achievements and advances in the entire field of soil science studies dealing with environmental science, ecology, agriculture, bioscience, geoscience, forestry, etc. It publishes mainly original research articles as well as some reviews, mini reviews, short communications and special issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信