Enhanced mechanical properties of Al0.43CoCrFeNi2.1 high entropy alloy fabricated through complex shear flow casting: Experiment and MD simulation

IF 6.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Simeng Jiang , Yaya Zhao , Weijie Fan , Weiyang Xie , Yanlin Wang , Xiaohua Chen , Zidong Wang
{"title":"Enhanced mechanical properties of Al0.43CoCrFeNi2.1 high entropy alloy fabricated through complex shear flow casting: Experiment and MD simulation","authors":"Simeng Jiang ,&nbsp;Yaya Zhao ,&nbsp;Weijie Fan ,&nbsp;Weiyang Xie ,&nbsp;Yanlin Wang ,&nbsp;Xiaohua Chen ,&nbsp;Zidong Wang","doi":"10.1016/j.jmrt.2024.12.228","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, a novel preparation method for high-entropy alloys (HEAs) was developed. Al<sub>0.43</sub>CoCrFeNi<sub>2.1</sub> HEA ingots were cast under complex shear flow, while a comparison group was cast without applying shear flow. Various characterization techniques were employed to analyze the microstructural differences between the two samples. Molecular dynamics (MD) simulations were used to investigate the nucleation characteristics, microstructure evolution, and dislocation evolution during solidification. Additionally, to investigate the deformation properties and mechanical behavior of the two samples, uniaxial tension was applied to the solidified samples using MD simulations. The results reveal that by introducing severe shear flow, the equiaxed grains of the Al<sub>0.43</sub>CoCrFeNi<sub>2.1</sub> HEA alloy were refined, twins were formed, and the likelihood of dislocation ring formation and dislocation entanglement during solidification decreased. Compared to the traditional method, the sample prepared by complex shear flow casting (CSFC) exhibits yield strength (YS), ultimate tensile strength (UTS), and elongation (EL) of 330.7 MPa, 661.7 MPa, and 54.8%, respectively, showing increases of 23.1%, 26.6%, and 7.5%, respectively. The strengthening and toughening mechanisms were discussed, suggesting that the refinement of equiaxed grains, the elimination of dislocation entanglement, the twinning-induced plasticity (TWIP) effect during deformation, and the transformation-induced plasticity (TRIP) effect induced by fivefold twins contribute to the improvement of mechanical properties. The novel CFSC method holds significant potential for applications in HEAs.</div></div>","PeriodicalId":54332,"journal":{"name":"Journal of Materials Research and Technology-Jmr&t","volume":"35 ","pages":"Pages 67-81"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research and Technology-Jmr&t","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S223878542403031X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, a novel preparation method for high-entropy alloys (HEAs) was developed. Al0.43CoCrFeNi2.1 HEA ingots were cast under complex shear flow, while a comparison group was cast without applying shear flow. Various characterization techniques were employed to analyze the microstructural differences between the two samples. Molecular dynamics (MD) simulations were used to investigate the nucleation characteristics, microstructure evolution, and dislocation evolution during solidification. Additionally, to investigate the deformation properties and mechanical behavior of the two samples, uniaxial tension was applied to the solidified samples using MD simulations. The results reveal that by introducing severe shear flow, the equiaxed grains of the Al0.43CoCrFeNi2.1 HEA alloy were refined, twins were formed, and the likelihood of dislocation ring formation and dislocation entanglement during solidification decreased. Compared to the traditional method, the sample prepared by complex shear flow casting (CSFC) exhibits yield strength (YS), ultimate tensile strength (UTS), and elongation (EL) of 330.7 MPa, 661.7 MPa, and 54.8%, respectively, showing increases of 23.1%, 26.6%, and 7.5%, respectively. The strengthening and toughening mechanisms were discussed, suggesting that the refinement of equiaxed grains, the elimination of dislocation entanglement, the twinning-induced plasticity (TWIP) effect during deformation, and the transformation-induced plasticity (TRIP) effect induced by fivefold twins contribute to the improvement of mechanical properties. The novel CFSC method holds significant potential for applications in HEAs.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Research and Technology-Jmr&t
Journal of Materials Research and Technology-Jmr&t Materials Science-Metals and Alloys
CiteScore
8.80
自引率
9.40%
发文量
1877
审稿时长
35 days
期刊介绍: The Journal of Materials Research and Technology is a publication of ABM - Brazilian Metallurgical, Materials and Mining Association - and publishes four issues per year also with a free version online (www.jmrt.com.br). The journal provides an international medium for the publication of theoretical and experimental studies related to Metallurgy, Materials and Minerals research and technology. Appropriate submissions to the Journal of Materials Research and Technology should include scientific and/or engineering factors which affect processes and products in the Metallurgy, Materials and Mining areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信