Qicong Chen , Yupeng Yin , Wentuo Han , Xiaoou Yi , Pingping Liu , Qian Zhan , Somei Ohnuki , Farong Wan
{"title":"A review on the anomalous exothermic behavior of bubbles in aluminum induced by electron irradiation","authors":"Qicong Chen , Yupeng Yin , Wentuo Han , Xiaoou Yi , Pingping Liu , Qian Zhan , Somei Ohnuki , Farong Wan","doi":"10.1016/j.jmrt.2025.01.100","DOIUrl":null,"url":null,"abstract":"<div><div>Anomalous exothermic phenomenon (AEP) under bubble irradiation in solids has captured widespread interest in the energy field. AEP was discovered during the transmission electron microscope (TEM) observation of deuterium-implanted aluminum. Under the irradiation of TEM electron beam, deuterium (D) bubbles led to AEP, causing the surrounding single-crystal aluminum to instantaneously transform into polycrystalline. The released heat was estimated as about 160 MeV. AEP has been discovered in different gas bubbles such as hydrogen, helium, argon, and neon. The influencing factors of AEP can be summarized as the bubble morphology and pressure, gas type and density, electron beam energy, and irradiation time. The factor interrelationships and the AEP threshold are discussed. In conjunction with experimental phenomena and simulation, the mechanism of AEP is speculated to be the plasma formation within the gas bubble. The generation of this substantial energy only requires the irradiation of bubbles with a beam of energetic particle. Such convenient, efficient, and controllable energy source is attractive. AEP may provide a potent new energy form.</div></div>","PeriodicalId":54332,"journal":{"name":"Journal of Materials Research and Technology-Jmr&t","volume":"35 ","pages":"Pages 1283-1295"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research and Technology-Jmr&t","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2238785425001000","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Anomalous exothermic phenomenon (AEP) under bubble irradiation in solids has captured widespread interest in the energy field. AEP was discovered during the transmission electron microscope (TEM) observation of deuterium-implanted aluminum. Under the irradiation of TEM electron beam, deuterium (D) bubbles led to AEP, causing the surrounding single-crystal aluminum to instantaneously transform into polycrystalline. The released heat was estimated as about 160 MeV. AEP has been discovered in different gas bubbles such as hydrogen, helium, argon, and neon. The influencing factors of AEP can be summarized as the bubble morphology and pressure, gas type and density, electron beam energy, and irradiation time. The factor interrelationships and the AEP threshold are discussed. In conjunction with experimental phenomena and simulation, the mechanism of AEP is speculated to be the plasma formation within the gas bubble. The generation of this substantial energy only requires the irradiation of bubbles with a beam of energetic particle. Such convenient, efficient, and controllable energy source is attractive. AEP may provide a potent new energy form.
期刊介绍:
The Journal of Materials Research and Technology is a publication of ABM - Brazilian Metallurgical, Materials and Mining Association - and publishes four issues per year also with a free version online (www.jmrt.com.br). The journal provides an international medium for the publication of theoretical and experimental studies related to Metallurgy, Materials and Minerals research and technology. Appropriate submissions to the Journal of Materials Research and Technology should include scientific and/or engineering factors which affect processes and products in the Metallurgy, Materials and Mining areas.