Direct quenching and double tempering obtain high strength and toughness of Cu-bearing HSLC martensitic steel

IF 6.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xingyu Zhao , Xiaoxin Zhang , Junquan Zhou , Yingxue Chen , Feifei Zhang , Jun Zhang , Qingzhi Yan
{"title":"Direct quenching and double tempering obtain high strength and toughness of Cu-bearing HSLC martensitic steel","authors":"Xingyu Zhao ,&nbsp;Xiaoxin Zhang ,&nbsp;Junquan Zhou ,&nbsp;Yingxue Chen ,&nbsp;Feifei Zhang ,&nbsp;Jun Zhang ,&nbsp;Qingzhi Yan","doi":"10.1016/j.jmrt.2025.01.006","DOIUrl":null,"url":null,"abstract":"<div><div>Cu-bearing high strength low carbon (HSLC) steel possesses high strength due to the existence of finely dispersed Cu-rich phases within the matrix. However, such high precipitation strengthening results in the loss of toughness. To break this strength-toughness trade-off, we propose a new strategy of direct quenching followed by double tempering (DQ-TT). Over four times higher energy was found in the DQ-TT sample (74 J) at −84<sup>o</sup>C compared to the other samples with single tempering (DQ-T, 13 J) and reheated quenching (RQ-TT, 6 J) without the sacrifice of strength. This high toughness is proved to be derived from: the higher cleavage fracture stress (<span><math><mrow><msub><mi>σ</mi><mi>F</mi></msub></mrow></math></span>) and the higher crack initiation and propagation energy. The former comes from the refined effective grain sizes (EGS, 5.66 μm) and the optimized element segregation, where Cu (low enrichment ratio of 2.75) and Mo (high enrichment ratio of 35.20). The reduced segregation of Cu and the enrichment of Mo at the lath boundaries can effectively enhance the interfacial bonding strength. The latter is related to the orientations of the materials. It is measured that the DQ-TT sample has higher &lt;110&gt;//RD (47.8%) and &lt;001&gt;//ND (20.5%) deformation textures, which correspond to the {001} cleavage plane parallel to the RD and {110} slip plane parallel to the ND. The weak {001}//RD and strong {110}//ND ensure crack initiation and propagation along weak interfaces while preventing significant cleavage fracture. Oscilloscope impact tests reveal that DQ-TT process possesses higher crack initiation and propagation energy, which are 20 J and 37 J, respectively.</div></div>","PeriodicalId":54332,"journal":{"name":"Journal of Materials Research and Technology-Jmr&t","volume":"35 ","pages":"Pages 13-24"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research and Technology-Jmr&t","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2238785425000067","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Cu-bearing high strength low carbon (HSLC) steel possesses high strength due to the existence of finely dispersed Cu-rich phases within the matrix. However, such high precipitation strengthening results in the loss of toughness. To break this strength-toughness trade-off, we propose a new strategy of direct quenching followed by double tempering (DQ-TT). Over four times higher energy was found in the DQ-TT sample (74 J) at −84oC compared to the other samples with single tempering (DQ-T, 13 J) and reheated quenching (RQ-TT, 6 J) without the sacrifice of strength. This high toughness is proved to be derived from: the higher cleavage fracture stress (σF) and the higher crack initiation and propagation energy. The former comes from the refined effective grain sizes (EGS, 5.66 μm) and the optimized element segregation, where Cu (low enrichment ratio of 2.75) and Mo (high enrichment ratio of 35.20). The reduced segregation of Cu and the enrichment of Mo at the lath boundaries can effectively enhance the interfacial bonding strength. The latter is related to the orientations of the materials. It is measured that the DQ-TT sample has higher <110>//RD (47.8%) and <001>//ND (20.5%) deformation textures, which correspond to the {001} cleavage plane parallel to the RD and {110} slip plane parallel to the ND. The weak {001}//RD and strong {110}//ND ensure crack initiation and propagation along weak interfaces while preventing significant cleavage fracture. Oscilloscope impact tests reveal that DQ-TT process possesses higher crack initiation and propagation energy, which are 20 J and 37 J, respectively.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Research and Technology-Jmr&t
Journal of Materials Research and Technology-Jmr&t Materials Science-Metals and Alloys
CiteScore
8.80
自引率
9.40%
发文量
1877
审稿时长
35 days
期刊介绍: The Journal of Materials Research and Technology is a publication of ABM - Brazilian Metallurgical, Materials and Mining Association - and publishes four issues per year also with a free version online (www.jmrt.com.br). The journal provides an international medium for the publication of theoretical and experimental studies related to Metallurgy, Materials and Minerals research and technology. Appropriate submissions to the Journal of Materials Research and Technology should include scientific and/or engineering factors which affect processes and products in the Metallurgy, Materials and Mining areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信