A scaling procedure for the shock characteristic of aluminum foam sandwich panels

IF 2.8 3区 工程技术 Q2 MECHANICS
Fengxia He , Chuansheng Zheng , Zhong Luo , Haitao Luo , Chengying Zhao , Huaitao Shi , Xiaotian Bai
{"title":"A scaling procedure for the shock characteristic of aluminum foam sandwich panels","authors":"Fengxia He ,&nbsp;Chuansheng Zheng ,&nbsp;Zhong Luo ,&nbsp;Haitao Luo ,&nbsp;Chengying Zhao ,&nbsp;Huaitao Shi ,&nbsp;Xiaotian Bai","doi":"10.1016/j.ijnonlinmec.2025.105026","DOIUrl":null,"url":null,"abstract":"<div><div>A structural similitude is introduced for the assessment of the vibration characteristics inherent to aluminum foam sandwich (AFS) panels. Scaling law for the natural frequency is fitted by neural network and transition models. The findings derived from both numerical simulations and experimental investigations indicate that the method put forth demonstrates superior efficacy compared to the conventional similitude theory utilized in governing equations. Additionally, a novel approach termed Similitudes based on Virtual Mode and Statistical Energy (SVMSE) is put forward to anticipate the shock response of AFS panels, incorporating similarity criteria for more accurate re-modulation. The numerical findings indicate that impact scenarios across various structures exhibit dynamic similarity, demonstrating identical vibration responses regardless of variations in size, impact duration, and amplitude. The results of the impact test on AFS panels indicate that the acceleration response and shock response spectrum (SRS) can be effectively scaled to extrapolate the behavior of the prototype, even in the presence of incomplete similarity. The anticipated similitude laws are expected to assist researchers in minimizing both costs and risks associated with experimental investigations.</div></div>","PeriodicalId":50303,"journal":{"name":"International Journal of Non-Linear Mechanics","volume":"171 ","pages":"Article 105026"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Non-Linear Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020746225000149","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

A structural similitude is introduced for the assessment of the vibration characteristics inherent to aluminum foam sandwich (AFS) panels. Scaling law for the natural frequency is fitted by neural network and transition models. The findings derived from both numerical simulations and experimental investigations indicate that the method put forth demonstrates superior efficacy compared to the conventional similitude theory utilized in governing equations. Additionally, a novel approach termed Similitudes based on Virtual Mode and Statistical Energy (SVMSE) is put forward to anticipate the shock response of AFS panels, incorporating similarity criteria for more accurate re-modulation. The numerical findings indicate that impact scenarios across various structures exhibit dynamic similarity, demonstrating identical vibration responses regardless of variations in size, impact duration, and amplitude. The results of the impact test on AFS panels indicate that the acceleration response and shock response spectrum (SRS) can be effectively scaled to extrapolate the behavior of the prototype, even in the presence of incomplete similarity. The anticipated similitude laws are expected to assist researchers in minimizing both costs and risks associated with experimental investigations.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.50
自引率
9.40%
发文量
192
审稿时长
67 days
期刊介绍: The International Journal of Non-Linear Mechanics provides a specific medium for dissemination of high-quality research results in the various areas of theoretical, applied, and experimental mechanics of solids, fluids, structures, and systems where the phenomena are inherently non-linear. The journal brings together original results in non-linear problems in elasticity, plasticity, dynamics, vibrations, wave-propagation, rheology, fluid-structure interaction systems, stability, biomechanics, micro- and nano-structures, materials, metamaterials, and in other diverse areas. Papers may be analytical, computational or experimental in nature. Treatments of non-linear differential equations wherein solutions and properties of solutions are emphasized but physical aspects are not adequately relevant, will not be considered for possible publication. Both deterministic and stochastic approaches are fostered. Contributions pertaining to both established and emerging fields are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信