CG-FL: A data augmentation approach using context-aware genetic algorithm for fault localization

IF 3.7 2区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Jian Hu
{"title":"CG-FL: A data augmentation approach using context-aware genetic algorithm for fault localization","authors":"Jian Hu","doi":"10.1016/j.jss.2025.112359","DOIUrl":null,"url":null,"abstract":"<div><div>Fault localization (FL) is a critical step in software debugging. Coverage-based fault localization (CFL) as one of the most promising FL technique utilizes coverage information obtained from program entities executed by test cases to determine the entities that are more likely to be faulty. However, CFL faces two main issues that limit its effectiveness. Firstly, the code coverage data contains numerous irrelevant statements for the observed failure, which makes the search scope too large for FL. Secondly, the input coverage data is highly imbalanced due to the presence of significantly more passing test cases than failing test cases, which makes the FL model bias to the passing test cases. To address these problems, we propose CG-FL, a data augmentation approach using context-aware genetic algorithm. Specifically, CG-FL first uses program slicing to construct a failure context for FL. Subsequently, CG-FL generate synthesized failing test cases through the application of the genetic algorithm. To evaluate the effectiveness of CG-FL, we compared it with six state-of-the-art FL methods and three representative data augmentation methods on 420 versions of 9 benchmarks. The experimental findings clearly indicate that CG-FL substantially enhances the effectiveness of the six FL methods and outperforms the three data augmentation methods.</div></div>","PeriodicalId":51099,"journal":{"name":"Journal of Systems and Software","volume":"222 ","pages":"Article 112359"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems and Software","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0164121225000275","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Fault localization (FL) is a critical step in software debugging. Coverage-based fault localization (CFL) as one of the most promising FL technique utilizes coverage information obtained from program entities executed by test cases to determine the entities that are more likely to be faulty. However, CFL faces two main issues that limit its effectiveness. Firstly, the code coverage data contains numerous irrelevant statements for the observed failure, which makes the search scope too large for FL. Secondly, the input coverage data is highly imbalanced due to the presence of significantly more passing test cases than failing test cases, which makes the FL model bias to the passing test cases. To address these problems, we propose CG-FL, a data augmentation approach using context-aware genetic algorithm. Specifically, CG-FL first uses program slicing to construct a failure context for FL. Subsequently, CG-FL generate synthesized failing test cases through the application of the genetic algorithm. To evaluate the effectiveness of CG-FL, we compared it with six state-of-the-art FL methods and three representative data augmentation methods on 420 versions of 9 benchmarks. The experimental findings clearly indicate that CG-FL substantially enhances the effectiveness of the six FL methods and outperforms the three data augmentation methods.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Systems and Software
Journal of Systems and Software 工程技术-计算机:理论方法
CiteScore
8.60
自引率
5.70%
发文量
193
审稿时长
16 weeks
期刊介绍: The Journal of Systems and Software publishes papers covering all aspects of software engineering and related hardware-software-systems issues. All articles should include a validation of the idea presented, e.g. through case studies, experiments, or systematic comparisons with other approaches already in practice. Topics of interest include, but are not limited to: •Methods and tools for, and empirical studies on, software requirements, design, architecture, verification and validation, maintenance and evolution •Agile, model-driven, service-oriented, open source and global software development •Approaches for mobile, multiprocessing, real-time, distributed, cloud-based, dependable and virtualized systems •Human factors and management concerns of software development •Data management and big data issues of software systems •Metrics and evaluation, data mining of software development resources •Business and economic aspects of software development processes The journal welcomes state-of-the-art surveys and reports of practical experience for all of these topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信