Effectiveness of symmetric metamorphic relations on validating the stability of code generation LLM

IF 3.7 2区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Pak Yuen Patrick Chan , Jacky Keung , Zhen Yang
{"title":"Effectiveness of symmetric metamorphic relations on validating the stability of code generation LLM","authors":"Pak Yuen Patrick Chan ,&nbsp;Jacky Keung ,&nbsp;Zhen Yang","doi":"10.1016/j.jss.2024.112330","DOIUrl":null,"url":null,"abstract":"<div><div>Pre-trained large language models (LLMs) are increasingly used in software development for code generation, with a preference for private LLMs over public ones to avoid the risk of exposing corporate secrets. Validating the stability of these LLMs’ outputs is crucial, and our study proposes using symmetric Metamorphic Relations (MRs) from Metamorphic Testing (MT) for this purpose. Our study involved an empirical experiment with ten LLMs (eight private and two public) and two publicly available datasets. We defined seven symmetric MRs to generate “Follow-up” datasets from “Source” datasets for testing. Our evaluation aimed to detect violations (inconsistent predictions) between “Source” and “Follow-up” datasets and assess the effectiveness of MRs in identifying correct and incorrect non-violated predictions from ground truths. Results showed that one public and four private LLMs did not violate “Case transformation of prompts” MR. Furthermore, effectiveness and performance results indicated that proposed MRs are effective tools for explaining the instability of LLM's outputs by “Case transformation of prompts”, “Duplication of prompts”, and “Paraphrasing of prompts”. The study underscored the importance of enhancing LLMs’ semantic understanding of prompts for better stability and highlighted potential future research directions, including exploring different MRs, enhancing semantic understanding, and applying symmetry to prompt engineering.</div></div>","PeriodicalId":51099,"journal":{"name":"Journal of Systems and Software","volume":"222 ","pages":"Article 112330"},"PeriodicalIF":3.7000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems and Software","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0164121224003741","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Pre-trained large language models (LLMs) are increasingly used in software development for code generation, with a preference for private LLMs over public ones to avoid the risk of exposing corporate secrets. Validating the stability of these LLMs’ outputs is crucial, and our study proposes using symmetric Metamorphic Relations (MRs) from Metamorphic Testing (MT) for this purpose. Our study involved an empirical experiment with ten LLMs (eight private and two public) and two publicly available datasets. We defined seven symmetric MRs to generate “Follow-up” datasets from “Source” datasets for testing. Our evaluation aimed to detect violations (inconsistent predictions) between “Source” and “Follow-up” datasets and assess the effectiveness of MRs in identifying correct and incorrect non-violated predictions from ground truths. Results showed that one public and four private LLMs did not violate “Case transformation of prompts” MR. Furthermore, effectiveness and performance results indicated that proposed MRs are effective tools for explaining the instability of LLM's outputs by “Case transformation of prompts”, “Duplication of prompts”, and “Paraphrasing of prompts”. The study underscored the importance of enhancing LLMs’ semantic understanding of prompts for better stability and highlighted potential future research directions, including exploring different MRs, enhancing semantic understanding, and applying symmetry to prompt engineering.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Systems and Software
Journal of Systems and Software 工程技术-计算机:理论方法
CiteScore
8.60
自引率
5.70%
发文量
193
审稿时长
16 weeks
期刊介绍: The Journal of Systems and Software publishes papers covering all aspects of software engineering and related hardware-software-systems issues. All articles should include a validation of the idea presented, e.g. through case studies, experiments, or systematic comparisons with other approaches already in practice. Topics of interest include, but are not limited to: •Methods and tools for, and empirical studies on, software requirements, design, architecture, verification and validation, maintenance and evolution •Agile, model-driven, service-oriented, open source and global software development •Approaches for mobile, multiprocessing, real-time, distributed, cloud-based, dependable and virtualized systems •Human factors and management concerns of software development •Data management and big data issues of software systems •Metrics and evaluation, data mining of software development resources •Business and economic aspects of software development processes The journal welcomes state-of-the-art surveys and reports of practical experience for all of these topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信