Predicting bone metastasis risk of colorectal tumors using radiomics and deep learning ViT model

IF 3.4 2区 医学 Q2 Medicine
Guanfeng Chen , Wenxi Liu , Yingmin Lin , Jie Zhang , Risheng Huang , Deqiu Ye , Jing Huang , Jieyun Chen
{"title":"Predicting bone metastasis risk of colorectal tumors using radiomics and deep learning ViT model","authors":"Guanfeng Chen ,&nbsp;Wenxi Liu ,&nbsp;Yingmin Lin ,&nbsp;Jie Zhang ,&nbsp;Risheng Huang ,&nbsp;Deqiu Ye ,&nbsp;Jing Huang ,&nbsp;Jieyun Chen","doi":"10.1016/j.jbo.2024.100659","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Colorectal cancer is a prevalent malignancy with a significant risk of metastasis, including to bones, which severely impacts patient outcomes. Accurate prediction of bone metastasis risk is crucial for optimizing treatment strategies and improving prognosis.</div></div><div><h3>Purpose</h3><div>This study aims to develop a predictive model combining radiomics and Vision Transformer (ViT) deep learning techniques to assess the risk of bone metastasis in colorectal cancer patients using both plain and contrast-enhanced CT images.</div></div><div><h3>Materials and methods</h3><div>We conducted a retrospective analysis of 155 colorectal cancer patients, including 81 with bone metastasis and 74 without. Radiomic features were extracted from segmented tumors on both plain and contrast-enhanced CT images. LASSO regression was applied to select key features, which were then used to build traditional machine learning models, including Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Random Forest, LightGBM, and XGBoost. Additionally, a dual-modality ViT model was trained on the same CT images, with a late fusion strategy employed to combine outputs from the different modalities. Model performance was evaluated using AUC-ROC, accuracy, sensitivity, and specificity, and differences were statistically assessed using DeLong’s test.</div></div><div><h3>Results</h3><div>The ViT model demonstrated superior predictive performance, achieving an AUC of 0.918 on the test set, significantly outperforming all traditional radiomics-based models. The SVM model, while the best among traditional models, still underperformed compared to the ViT model. The ViT model’s strength lies in its ability to capture complex spatial relationships and long-range dependencies within the imaging data, which are often missed by traditional models. DeLong’s test confirmed the statistical significance of the ViT model’s enhanced performance, highlighting its potential as a powerful tool for predicting bone metastasis risk in colorectal cancer patients.</div></div><div><h3>Conclusion</h3><div>The integration of radiomics with ViT-based deep learning offers a robust and accurate method for predicting bone metastasis risk in colorectal cancer patients. The ViT model’s ability to analyze dual-modality CT imaging data provides greater precision in risk assessment, which can improve clinical decision-making and personalized treatment strategies. These findings underscore the promise of advanced deep learning models in enhancing the accuracy of metastasis prediction. Further validation in larger, multicenter studies is recommended to confirm the generalizability of these results.</div></div>","PeriodicalId":48806,"journal":{"name":"Journal of Bone Oncology","volume":"51 ","pages":"Article 100659"},"PeriodicalIF":3.4000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bone Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212137424001398","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Colorectal cancer is a prevalent malignancy with a significant risk of metastasis, including to bones, which severely impacts patient outcomes. Accurate prediction of bone metastasis risk is crucial for optimizing treatment strategies and improving prognosis.

Purpose

This study aims to develop a predictive model combining radiomics and Vision Transformer (ViT) deep learning techniques to assess the risk of bone metastasis in colorectal cancer patients using both plain and contrast-enhanced CT images.

Materials and methods

We conducted a retrospective analysis of 155 colorectal cancer patients, including 81 with bone metastasis and 74 without. Radiomic features were extracted from segmented tumors on both plain and contrast-enhanced CT images. LASSO regression was applied to select key features, which were then used to build traditional machine learning models, including Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Random Forest, LightGBM, and XGBoost. Additionally, a dual-modality ViT model was trained on the same CT images, with a late fusion strategy employed to combine outputs from the different modalities. Model performance was evaluated using AUC-ROC, accuracy, sensitivity, and specificity, and differences were statistically assessed using DeLong’s test.

Results

The ViT model demonstrated superior predictive performance, achieving an AUC of 0.918 on the test set, significantly outperforming all traditional radiomics-based models. The SVM model, while the best among traditional models, still underperformed compared to the ViT model. The ViT model’s strength lies in its ability to capture complex spatial relationships and long-range dependencies within the imaging data, which are often missed by traditional models. DeLong’s test confirmed the statistical significance of the ViT model’s enhanced performance, highlighting its potential as a powerful tool for predicting bone metastasis risk in colorectal cancer patients.

Conclusion

The integration of radiomics with ViT-based deep learning offers a robust and accurate method for predicting bone metastasis risk in colorectal cancer patients. The ViT model’s ability to analyze dual-modality CT imaging data provides greater precision in risk assessment, which can improve clinical decision-making and personalized treatment strategies. These findings underscore the promise of advanced deep learning models in enhancing the accuracy of metastasis prediction. Further validation in larger, multicenter studies is recommended to confirm the generalizability of these results.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
2.90%
发文量
50
审稿时长
34 days
期刊介绍: The Journal of Bone Oncology is a peer-reviewed international journal aimed at presenting basic, translational and clinical high-quality research related to bone and cancer. As the first journal dedicated to cancer induced bone diseases, JBO welcomes original research articles, review articles, editorials and opinion pieces. Case reports will only be considered in exceptional circumstances and only when accompanied by a comprehensive review of the subject. The areas covered by the journal include: Bone metastases (pathophysiology, epidemiology, diagnostics, clinical features, prevention, treatment) Preclinical models of metastasis Bone microenvironment in cancer (stem cell, bone cell and cancer interactions) Bone targeted therapy (pharmacology, therapeutic targets, drug development, clinical trials, side-effects, outcome research, health economics) Cancer treatment induced bone loss (epidemiology, pathophysiology, prevention and management) Bone imaging (clinical and animal, skeletal interventional radiology) Bone biomarkers (clinical and translational applications) Radiotherapy and radio-isotopes Skeletal complications Bone pain (mechanisms and management) Orthopaedic cancer surgery Primary bone tumours Clinical guidelines Multidisciplinary care Keywords: bisphosphonate, bone, breast cancer, cancer, CTIBL, denosumab, metastasis, myeloma, osteoblast, osteoclast, osteooncology, osteo-oncology, prostate cancer, skeleton, tumour.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信