Lipid metabolic reprogramming and associated ferroptosis in osteosarcoma: From molecular mechanisms to potential targets

IF 3.4 2区 医学 Q2 Medicine
Zhiyang Yin , Guanlu Shen , Minjie Fan , Pengfei Zheng
{"title":"Lipid metabolic reprogramming and associated ferroptosis in osteosarcoma: From molecular mechanisms to potential targets","authors":"Zhiyang Yin ,&nbsp;Guanlu Shen ,&nbsp;Minjie Fan ,&nbsp;Pengfei Zheng","doi":"10.1016/j.jbo.2025.100660","DOIUrl":null,"url":null,"abstract":"<div><div>Osteosarcoma is a common bone tumor in adolescents, which is characterized by lipid metabolism disorders and plays a key role in tumorigenesis and disease progression. Ferroptosis is an iron-dependent form of programmed cell death associated with lipid peroxidation. This review provides an in-depth analysis of the complex relationship between lipid metabolic reprogramming and associated ferroptosis in OS from the perspective of metabolic enzymes and metabolites. We discussed the molecular basis of lipid uptake, synthesis, storage, lipolysis, and the tumor microenvironment, as well as their significance in OS development. Key enzymes such as adenosine triphosphate-citrate lyase (ACLY), acetyl-CoA synthetase 2 (ACSS2), fatty acid synthase (FASN) and stearoyl-CoA desaturase-1 (SCD1) are overexpressed in OS and associated with poor prognosis.</div><div>Based on specific changes in metabolic processes, this review highlights potential therapeutic targets in the lipid metabolism and ferroptosis pathways, and in particular the HMG-CoA reductase inhibitor simvastatin has shown potential in inducing apoptosis and inhibiting OS metastasis. Targeting these pathways provides new strategies for the treatment of OS. However, challenges such as the complexity of drug development and metabolic interactions must be overcome. A comprehensive understanding of the interplay between dysregulation of lipid metabolism and ferroptosis is essential for the development of innovative and effective therapies for OS, with the ultimate goal of improving patient outcomes.</div></div>","PeriodicalId":48806,"journal":{"name":"Journal of Bone Oncology","volume":"51 ","pages":"Article 100660"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bone Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212137425000016","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Osteosarcoma is a common bone tumor in adolescents, which is characterized by lipid metabolism disorders and plays a key role in tumorigenesis and disease progression. Ferroptosis is an iron-dependent form of programmed cell death associated with lipid peroxidation. This review provides an in-depth analysis of the complex relationship between lipid metabolic reprogramming and associated ferroptosis in OS from the perspective of metabolic enzymes and metabolites. We discussed the molecular basis of lipid uptake, synthesis, storage, lipolysis, and the tumor microenvironment, as well as their significance in OS development. Key enzymes such as adenosine triphosphate-citrate lyase (ACLY), acetyl-CoA synthetase 2 (ACSS2), fatty acid synthase (FASN) and stearoyl-CoA desaturase-1 (SCD1) are overexpressed in OS and associated with poor prognosis.
Based on specific changes in metabolic processes, this review highlights potential therapeutic targets in the lipid metabolism and ferroptosis pathways, and in particular the HMG-CoA reductase inhibitor simvastatin has shown potential in inducing apoptosis and inhibiting OS metastasis. Targeting these pathways provides new strategies for the treatment of OS. However, challenges such as the complexity of drug development and metabolic interactions must be overcome. A comprehensive understanding of the interplay between dysregulation of lipid metabolism and ferroptosis is essential for the development of innovative and effective therapies for OS, with the ultimate goal of improving patient outcomes.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
2.90%
发文量
50
审稿时长
34 days
期刊介绍: The Journal of Bone Oncology is a peer-reviewed international journal aimed at presenting basic, translational and clinical high-quality research related to bone and cancer. As the first journal dedicated to cancer induced bone diseases, JBO welcomes original research articles, review articles, editorials and opinion pieces. Case reports will only be considered in exceptional circumstances and only when accompanied by a comprehensive review of the subject. The areas covered by the journal include: Bone metastases (pathophysiology, epidemiology, diagnostics, clinical features, prevention, treatment) Preclinical models of metastasis Bone microenvironment in cancer (stem cell, bone cell and cancer interactions) Bone targeted therapy (pharmacology, therapeutic targets, drug development, clinical trials, side-effects, outcome research, health economics) Cancer treatment induced bone loss (epidemiology, pathophysiology, prevention and management) Bone imaging (clinical and animal, skeletal interventional radiology) Bone biomarkers (clinical and translational applications) Radiotherapy and radio-isotopes Skeletal complications Bone pain (mechanisms and management) Orthopaedic cancer surgery Primary bone tumours Clinical guidelines Multidisciplinary care Keywords: bisphosphonate, bone, breast cancer, cancer, CTIBL, denosumab, metastasis, myeloma, osteoblast, osteoclast, osteooncology, osteo-oncology, prostate cancer, skeleton, tumour.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信