Practical application of time-lapse camera imagery to develop water-level data for three hydrologic monitoring sites in Wisconsin during water year 2020

IF 3.1 Q2 GEOSCIENCES, MULTIDISCIPLINARY
Keegan E. Johnson, Paul C. Reneau, Matthew J. Komiskey
{"title":"Practical application of time-lapse camera imagery to develop water-level data for three hydrologic monitoring sites in Wisconsin during water year 2020","authors":"Keegan E. Johnson,&nbsp;Paul C. Reneau,&nbsp;Matthew J. Komiskey","doi":"10.1016/j.hydroa.2024.100199","DOIUrl":null,"url":null,"abstract":"<div><div>Using camera imagery to measure water level (camera-stage) is a well-researched area of study. Previous camera-stage studies have shown promising results when implementing this technology with tight constraints on test conditions. However, there is a need for a more comprehensive evaluation of the extensibility of camera-stage to practical applications. Therefore, the aim of this study was to test a camera-stage method under a wide variety of test conditions to better understand the successes and challenges of using this technology in real-world scenarios. In this study, this approach was tested during Water Year 2020 at three existing U.S. Geological Study (USGS) stream gaging stations in south central Wisconsin that had existing USGS water-level instrumentation. The specific reference objects tested were white pipes and a concrete wall. Since successful application of camera-stage relies on use of suitable images, all captured images in this study were visually inspected to determine suitability for application of camera-stage. Camera-stage measurements were then computed only on images deemed suitable and the results were compared with ground-truth stage values to determine the accuracy. For the purposes of this study, camera-stage values within ±0.10 ft of the actual stage were considered acceptable. One major challenge highlighted was the potential difficulty in obtaining suitable imagery, with the proportion of suitable images varying greatly between the four trials from 38 % to 92 %. The results from applying camera-stage to suitable images were encouraging though, with 79 % to 99 % of evaluated camera-stage values qualifying as acceptable among the four test trials.</div></div>","PeriodicalId":36948,"journal":{"name":"Journal of Hydrology X","volume":"26 ","pages":"Article 100199"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589915524000294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Using camera imagery to measure water level (camera-stage) is a well-researched area of study. Previous camera-stage studies have shown promising results when implementing this technology with tight constraints on test conditions. However, there is a need for a more comprehensive evaluation of the extensibility of camera-stage to practical applications. Therefore, the aim of this study was to test a camera-stage method under a wide variety of test conditions to better understand the successes and challenges of using this technology in real-world scenarios. In this study, this approach was tested during Water Year 2020 at three existing U.S. Geological Study (USGS) stream gaging stations in south central Wisconsin that had existing USGS water-level instrumentation. The specific reference objects tested were white pipes and a concrete wall. Since successful application of camera-stage relies on use of suitable images, all captured images in this study were visually inspected to determine suitability for application of camera-stage. Camera-stage measurements were then computed only on images deemed suitable and the results were compared with ground-truth stage values to determine the accuracy. For the purposes of this study, camera-stage values within ±0.10 ft of the actual stage were considered acceptable. One major challenge highlighted was the potential difficulty in obtaining suitable imagery, with the proportion of suitable images varying greatly between the four trials from 38 % to 92 %. The results from applying camera-stage to suitable images were encouraging though, with 79 % to 99 % of evaluated camera-stage values qualifying as acceptable among the four test trials.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Hydrology X
Journal of Hydrology X Environmental Science-Water Science and Technology
CiteScore
7.00
自引率
2.50%
发文量
20
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信