Modelling the energy dependent X-ray variability of Mrk 335

IF 10.2 4区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
K. Akhila , Ranjeev Misra , Rathin Sarma , Savithri H. Ezhikode , K. Jeena
{"title":"Modelling the energy dependent X-ray variability of Mrk 335","authors":"K. Akhila ,&nbsp;Ranjeev Misra ,&nbsp;Rathin Sarma ,&nbsp;Savithri H. Ezhikode ,&nbsp;K. Jeena","doi":"10.1016/j.jheap.2025.01.014","DOIUrl":null,"url":null,"abstract":"<div><div>We present a technique which predicts the energy dependent fractional r.m.s. for linear correlated variations of a pair of spectral parameters and apply it to an <em>XMM-Newton</em> observation of Mrk 335. The broadband X-ray spectrum can be interpreted as a patchy absorber partially covering the primary emission, a warm and hot coronal emission or a relativistically blurred reflection along with the primary emission. The fractional r.m.s. has a non-monotonic behaviour with energy for segments of lengths 3 and 6 ksecs. For each spectral model, we consider every pair of spectral parameters and fit the predicted r.m.s. with the observed ones, to get the pair which provides the best fit. We find that a variation in at least two parameters is required for all spectral interpretations. For both time segments, variations in the covering fraction of the absorber and the primary power law index gives the best result for the partial covering model, while a variation in the normalization and spectral index of the warm component gives the best fit in the two corona interpretation. For the reflection model, the best fit parameters are different for the two time segment lengths, and the results suggests that more than two parameters are required to explain the data. This, combined with the extreme values of emissivity index and reflection fraction parameters obtained from the spectral analysis, indicates that the blurred reflection model might not be a suitable explanation for the Mrk 335 spectrum. We discuss the results as well as the potential of the technique to be applied to other data sets of different AGN.</div></div>","PeriodicalId":54265,"journal":{"name":"Journal of High Energy Astrophysics","volume":"45 ","pages":"Pages 418-427"},"PeriodicalIF":10.2000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221440482500014X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

We present a technique which predicts the energy dependent fractional r.m.s. for linear correlated variations of a pair of spectral parameters and apply it to an XMM-Newton observation of Mrk 335. The broadband X-ray spectrum can be interpreted as a patchy absorber partially covering the primary emission, a warm and hot coronal emission or a relativistically blurred reflection along with the primary emission. The fractional r.m.s. has a non-monotonic behaviour with energy for segments of lengths 3 and 6 ksecs. For each spectral model, we consider every pair of spectral parameters and fit the predicted r.m.s. with the observed ones, to get the pair which provides the best fit. We find that a variation in at least two parameters is required for all spectral interpretations. For both time segments, variations in the covering fraction of the absorber and the primary power law index gives the best result for the partial covering model, while a variation in the normalization and spectral index of the warm component gives the best fit in the two corona interpretation. For the reflection model, the best fit parameters are different for the two time segment lengths, and the results suggests that more than two parameters are required to explain the data. This, combined with the extreme values of emissivity index and reflection fraction parameters obtained from the spectral analysis, indicates that the blurred reflection model might not be a suitable explanation for the Mrk 335 spectrum. We discuss the results as well as the potential of the technique to be applied to other data sets of different AGN.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of High Energy Astrophysics
Journal of High Energy Astrophysics Earth and Planetary Sciences-Space and Planetary Science
CiteScore
9.70
自引率
5.30%
发文量
38
审稿时长
65 days
期刊介绍: The journal welcomes manuscripts on theoretical models, simulations, and observations of highly energetic astrophysical objects both in our Galaxy and beyond. Among those, black holes at all scales, neutron stars, pulsars and their nebula, binaries, novae and supernovae, their remnants, active galaxies, and clusters are just a few examples. The journal will consider research across the whole electromagnetic spectrum, as well as research using various messengers, such as gravitational waves or neutrinos. Effects of high-energy phenomena on cosmology and star-formation, results from dedicated surveys expanding the knowledge of extreme environments, and astrophysical implications of dark matter are also welcomed topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信