Wenbin Yao, Haidong Liu, Zehua Yang, Xiao Chen, Shouxiang Lu
{"title":"Simplified radiation and soot models for buoyant diffusion flames: Quantitative investigation of fuel mixing effects","authors":"Wenbin Yao, Haidong Liu, Zehua Yang, Xiao Chen, Shouxiang Lu","doi":"10.1016/j.combustflame.2024.113904","DOIUrl":null,"url":null,"abstract":"<div><div>Simplified radiation and soot models were proposed to provide a simple yet effective method predicting flame radiation and soot characteristics for buoyant diffusion flames. To explore the quantitative effects of fuel mixing and validate the proposed models, LII measurement of soot distribution and multi-point measurement of radiation flux were conducted for different fuel mixtures and different mixing ratios. Characteristic length scales, including the height of soot inception, the height of maximum soot volume fraction and the height of soot oxidation in the soot distributions, were determined by the fuel type and mixing ratio, and resulted in different maximum soot volume fractions. The axial distribution of soot volume fraction, maximum soot volume fraction, soot volume and soot yield can be predicted by the simplified soot model based on the critical mixture fractions. The probability density function of axial soot volume fraction can be described by an exponential function related to the non-sooty probability and maximum soot volume fraction. In addition, flame radiation power presents a linear correlation with soot volume, and flame radiation fraction of buoyant diffusion flame of fuel mixtures presents a linear relationship with the maximum soot volume fraction, which is in agreement with the simplified radiation model proposed in this work.</div></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"272 ","pages":"Article 113904"},"PeriodicalIF":5.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion and Flame","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010218024006138","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Simplified radiation and soot models were proposed to provide a simple yet effective method predicting flame radiation and soot characteristics for buoyant diffusion flames. To explore the quantitative effects of fuel mixing and validate the proposed models, LII measurement of soot distribution and multi-point measurement of radiation flux were conducted for different fuel mixtures and different mixing ratios. Characteristic length scales, including the height of soot inception, the height of maximum soot volume fraction and the height of soot oxidation in the soot distributions, were determined by the fuel type and mixing ratio, and resulted in different maximum soot volume fractions. The axial distribution of soot volume fraction, maximum soot volume fraction, soot volume and soot yield can be predicted by the simplified soot model based on the critical mixture fractions. The probability density function of axial soot volume fraction can be described by an exponential function related to the non-sooty probability and maximum soot volume fraction. In addition, flame radiation power presents a linear correlation with soot volume, and flame radiation fraction of buoyant diffusion flame of fuel mixtures presents a linear relationship with the maximum soot volume fraction, which is in agreement with the simplified radiation model proposed in this work.
期刊介绍:
The mission of the journal is to publish high quality work from experimental, theoretical, and computational investigations on the fundamentals of combustion phenomena and closely allied matters. While submissions in all pertinent areas are welcomed, past and recent focus of the journal has been on:
Development and validation of reaction kinetics, reduction of reaction mechanisms and modeling of combustion systems, including:
Conventional, alternative and surrogate fuels;
Pollutants;
Particulate and aerosol formation and abatement;
Heterogeneous processes.
Experimental, theoretical, and computational studies of laminar and turbulent combustion phenomena, including:
Premixed and non-premixed flames;
Ignition and extinction phenomena;
Flame propagation;
Flame structure;
Instabilities and swirl;
Flame spread;
Multi-phase reactants.
Advances in diagnostic and computational methods in combustion, including:
Measurement and simulation of scalar and vector properties;
Novel techniques;
State-of-the art applications.
Fundamental investigations of combustion technologies and systems, including:
Internal combustion engines;
Gas turbines;
Small- and large-scale stationary combustion and power generation;
Catalytic combustion;
Combustion synthesis;
Combustion under extreme conditions;
New concepts.