Siamese topographic generation model: A deep learning model for generating Antarctic subglacial topography with fine details

IF 4.2 2区 地球科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Yiheng Cai , Yanliang He , Shinan Lang , Xiangbin Cui , Xiaoqing Zhang , Zijun Yao
{"title":"Siamese topographic generation model: A deep learning model for generating Antarctic subglacial topography with fine details","authors":"Yiheng Cai ,&nbsp;Yanliang He ,&nbsp;Shinan Lang ,&nbsp;Xiangbin Cui ,&nbsp;Xiaoqing Zhang ,&nbsp;Zijun Yao","doi":"10.1016/j.cageo.2025.105857","DOIUrl":null,"url":null,"abstract":"<div><div>The ongoing accumulation of radio-echo sounding (RES) measurements in Antarctica in recent years has significantly expanded our understanding of subglacial structures. The effective use of RES-collected data to construct accurate Antarctic subglacial topography has emerged as a vital component of contemporary polar research. Various methods, including conventional interpolation, inversion techniques, and even deep learning methods, have been used to recreate Antarctic bed topography. However, these bed topographies are often plagued by over-smoothing, loss of small-scale features, low precision, and instability.</div><div>The Siamese topographic generation model (STGM) is proposed here to address the above mentioned issues. After being trained on ArcticDEM, this model can generate Antarctic subglacial topography with stability and accuracy by merging the advantages of deep learning-based generative models, Siamese networks, kernel prediction, and deformable convolutions. In terms of evaluation, both quantitative and qualitative comparisons with current Antarctic subglacial digital elevation models demonstrate that our method can generate topographical features, such as mountains, ice streams, and valleys, with high precision and minimal artifacts. In quantitative validation, our model achieves over 20% improvement in both Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) compared to the previously best-performing method (GEI), surpassing existing models in terms of accuracy and detail.</div><div>Moreover, an error analysis specifically focusing on the effect of varying track intervals has been conducted, offering a benchmark for future investigations into the influence of track density on model errors. Finally, using STGM based on the RES data, the subglacial topography of Princess Elizabeth Land has also been successfully generated. In this area, the topography generated by STGM at a resolution of 500 m clearly depicts subglacial lakes and valleys, revealing the complexity and diversity of the subglacial topography.</div></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":"196 ","pages":"Article 105857"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Geosciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009830042500007X","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The ongoing accumulation of radio-echo sounding (RES) measurements in Antarctica in recent years has significantly expanded our understanding of subglacial structures. The effective use of RES-collected data to construct accurate Antarctic subglacial topography has emerged as a vital component of contemporary polar research. Various methods, including conventional interpolation, inversion techniques, and even deep learning methods, have been used to recreate Antarctic bed topography. However, these bed topographies are often plagued by over-smoothing, loss of small-scale features, low precision, and instability.
The Siamese topographic generation model (STGM) is proposed here to address the above mentioned issues. After being trained on ArcticDEM, this model can generate Antarctic subglacial topography with stability and accuracy by merging the advantages of deep learning-based generative models, Siamese networks, kernel prediction, and deformable convolutions. In terms of evaluation, both quantitative and qualitative comparisons with current Antarctic subglacial digital elevation models demonstrate that our method can generate topographical features, such as mountains, ice streams, and valleys, with high precision and minimal artifacts. In quantitative validation, our model achieves over 20% improvement in both Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) compared to the previously best-performing method (GEI), surpassing existing models in terms of accuracy and detail.
Moreover, an error analysis specifically focusing on the effect of varying track intervals has been conducted, offering a benchmark for future investigations into the influence of track density on model errors. Finally, using STGM based on the RES data, the subglacial topography of Princess Elizabeth Land has also been successfully generated. In this area, the topography generated by STGM at a resolution of 500 m clearly depicts subglacial lakes and valleys, revealing the complexity and diversity of the subglacial topography.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Geosciences
Computers & Geosciences 地学-地球科学综合
CiteScore
9.30
自引率
6.80%
发文量
164
审稿时长
3.4 months
期刊介绍: Computers & Geosciences publishes high impact, original research at the interface between Computer Sciences and Geosciences. Publications should apply modern computer science paradigms, whether computational or informatics-based, to address problems in the geosciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信