A discrete Immersed Boundary Method for the numerical simulation of heat transfer in compressible flows

IF 2.5 3区 工程技术 Q2 MECHANICS
H. Riahi , P. Errante , E. Goncalves da Silva , M. Meldi
{"title":"A discrete Immersed Boundary Method for the numerical simulation of heat transfer in compressible flows","authors":"H. Riahi ,&nbsp;P. Errante ,&nbsp;E. Goncalves da Silva ,&nbsp;M. Meldi","doi":"10.1016/j.euromechflu.2024.12.001","DOIUrl":null,"url":null,"abstract":"<div><div>In the present study, a discrete forcing Immersed Boundary Method (IBM) is proposed for the numerical simulation of high-speed flow problems including heat exchange. This class of tools is relevant for several applications in engineering studies for aerospace applications, notably for atmospheric reentry. The flow field is governed by the compressible Navier–Stokes equations, which are resolved by using the open source library OpenFOAM. The numerical solver is modified to include source terms in the momentum equation and in the energy equation, which account for the presence of the immersed body. The method is validated on some benchmark test cases dealing with forced convection problems and moving immersed bodies. The results obtained are in very good agreement with data provided in the literature. The method is further assessed by investigating three-dimensional high Mach flows around a heated sphere with different wall temperature. Even for this more complex test case, the method provides an accurate representation of both thermal and velocity fields.</div></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"111 ","pages":"Pages 61-71"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics B-fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997754624001833","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

In the present study, a discrete forcing Immersed Boundary Method (IBM) is proposed for the numerical simulation of high-speed flow problems including heat exchange. This class of tools is relevant for several applications in engineering studies for aerospace applications, notably for atmospheric reentry. The flow field is governed by the compressible Navier–Stokes equations, which are resolved by using the open source library OpenFOAM. The numerical solver is modified to include source terms in the momentum equation and in the energy equation, which account for the presence of the immersed body. The method is validated on some benchmark test cases dealing with forced convection problems and moving immersed bodies. The results obtained are in very good agreement with data provided in the literature. The method is further assessed by investigating three-dimensional high Mach flows around a heated sphere with different wall temperature. Even for this more complex test case, the method provides an accurate representation of both thermal and velocity fields.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.90
自引率
3.80%
发文量
127
审稿时长
58 days
期刊介绍: The European Journal of Mechanics - B/Fluids publishes papers in all fields of fluid mechanics. Although investigations in well-established areas are within the scope of the journal, recent developments and innovative ideas are particularly welcome. Theoretical, computational and experimental papers are equally welcome. Mathematical methods, be they deterministic or stochastic, analytical or numerical, will be accepted provided they serve to clarify some identifiable problems in fluid mechanics, and provided the significance of results is explained. Similarly, experimental papers must add physical insight in to the understanding of fluid mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信