H. Riahi , P. Errante , E. Goncalves da Silva , M. Meldi
{"title":"A discrete Immersed Boundary Method for the numerical simulation of heat transfer in compressible flows","authors":"H. Riahi , P. Errante , E. Goncalves da Silva , M. Meldi","doi":"10.1016/j.euromechflu.2024.12.001","DOIUrl":null,"url":null,"abstract":"<div><div>In the present study, a discrete forcing Immersed Boundary Method (IBM) is proposed for the numerical simulation of high-speed flow problems including heat exchange. This class of tools is relevant for several applications in engineering studies for aerospace applications, notably for atmospheric reentry. The flow field is governed by the compressible Navier–Stokes equations, which are resolved by using the open source library OpenFOAM. The numerical solver is modified to include source terms in the momentum equation and in the energy equation, which account for the presence of the immersed body. The method is validated on some benchmark test cases dealing with forced convection problems and moving immersed bodies. The results obtained are in very good agreement with data provided in the literature. The method is further assessed by investigating three-dimensional high Mach flows around a heated sphere with different wall temperature. Even for this more complex test case, the method provides an accurate representation of both thermal and velocity fields.</div></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"111 ","pages":"Pages 61-71"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics B-fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997754624001833","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
In the present study, a discrete forcing Immersed Boundary Method (IBM) is proposed for the numerical simulation of high-speed flow problems including heat exchange. This class of tools is relevant for several applications in engineering studies for aerospace applications, notably for atmospheric reentry. The flow field is governed by the compressible Navier–Stokes equations, which are resolved by using the open source library OpenFOAM. The numerical solver is modified to include source terms in the momentum equation and in the energy equation, which account for the presence of the immersed body. The method is validated on some benchmark test cases dealing with forced convection problems and moving immersed bodies. The results obtained are in very good agreement with data provided in the literature. The method is further assessed by investigating three-dimensional high Mach flows around a heated sphere with different wall temperature. Even for this more complex test case, the method provides an accurate representation of both thermal and velocity fields.
期刊介绍:
The European Journal of Mechanics - B/Fluids publishes papers in all fields of fluid mechanics. Although investigations in well-established areas are within the scope of the journal, recent developments and innovative ideas are particularly welcome. Theoretical, computational and experimental papers are equally welcome. Mathematical methods, be they deterministic or stochastic, analytical or numerical, will be accepted provided they serve to clarify some identifiable problems in fluid mechanics, and provided the significance of results is explained. Similarly, experimental papers must add physical insight in to the understanding of fluid mechanics.