tonus: Detection, characterization and cataloguing of seismo-volcanic tonal signals

IF 4.2 2区 地球科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Leonardo van der Laat , Mauricio M. Mora , Javier Fco. Pacheco , Philippe Lesage , Esteban Meneses
{"title":"tonus: Detection, characterization and cataloguing of seismo-volcanic tonal signals","authors":"Leonardo van der Laat ,&nbsp;Mauricio M. Mora ,&nbsp;Javier Fco. Pacheco ,&nbsp;Philippe Lesage ,&nbsp;Esteban Meneses","doi":"10.1016/j.cageo.2024.105791","DOIUrl":null,"url":null,"abstract":"<div><div>Observational seismology plays a crucial role in volcano monitoring programs. It enables the detection and understanding of various volcanic processes. Among the variety of seismic signatures, tonal coda and harmonic tremor stand out. They showcase at least one prominent spectral peak and appear at various phases of volcanic activity, during late stages of pre-eruptive periods and eruptions. Previous studies have shown that the analysis of these signals can, not only enhance the understanding of volcanic processes, but potentially contribute to eruption forecasting. This research introduces <em>tonus</em>, a software tool designed to detect, analyze, and catalogue tonal events in a volcano observatory context. The tool provides user-friendly graphical interfaces that facilitate data visualization and analysis, parameters adjustment, and querying of a standardized database. Developed using open-source and cross-platform systems, tonus uniquely detects and systematically catalogs relevant characteristics of tonal coda and harmonic tremor events. The detection algorithm, tested with pre-eruptive data from Turrialba volcano in April 2016, achieved 95% precision and 80% recall. The occurrence of thousands of tonal events in Costa Rican volcanoes inspired the development of this software, providing us with the ability to rapidly process tonal seismicity. Over the last three years, the use of this software enabled the identification of surges in tonal coda events, characterized by decreasing spectral frequencies, preceding eruptive activities at both Turrialba and Rincón de la Vieja volcanoes. tonus represents a significant contribution to volcano seismology research and monitoring, successfully bridging a gap between academic methodologies and practical observatory applications.</div></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":"196 ","pages":"Article 105791"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Geosciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098300424002747","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Observational seismology plays a crucial role in volcano monitoring programs. It enables the detection and understanding of various volcanic processes. Among the variety of seismic signatures, tonal coda and harmonic tremor stand out. They showcase at least one prominent spectral peak and appear at various phases of volcanic activity, during late stages of pre-eruptive periods and eruptions. Previous studies have shown that the analysis of these signals can, not only enhance the understanding of volcanic processes, but potentially contribute to eruption forecasting. This research introduces tonus, a software tool designed to detect, analyze, and catalogue tonal events in a volcano observatory context. The tool provides user-friendly graphical interfaces that facilitate data visualization and analysis, parameters adjustment, and querying of a standardized database. Developed using open-source and cross-platform systems, tonus uniquely detects and systematically catalogs relevant characteristics of tonal coda and harmonic tremor events. The detection algorithm, tested with pre-eruptive data from Turrialba volcano in April 2016, achieved 95% precision and 80% recall. The occurrence of thousands of tonal events in Costa Rican volcanoes inspired the development of this software, providing us with the ability to rapidly process tonal seismicity. Over the last three years, the use of this software enabled the identification of surges in tonal coda events, characterized by decreasing spectral frequencies, preceding eruptive activities at both Turrialba and Rincón de la Vieja volcanoes. tonus represents a significant contribution to volcano seismology research and monitoring, successfully bridging a gap between academic methodologies and practical observatory applications.
地震-火山调性信号的探测、表征和编目
观测地震学在火山监测中起着至关重要的作用。它使探测和了解各种火山过程成为可能。在众多的地震特征中,音调尾和谐波震颤最为突出。它们展示了至少一个突出的光谱峰,出现在火山活动的各个阶段,在爆发前和爆发的后期。先前的研究表明,对这些信号的分析不仅可以增强对火山过程的理解,而且可能有助于火山爆发的预测。本研究介绍了tonus,一个用于在火山观测环境中检测、分析和编目音调事件的软件工具。该工具提供了用户友好的图形界面,便于数据可视化和分析、参数调整和标准化数据库的查询。tonus使用开源和跨平台系统开发,可以独特地检测和系统地编目音调尾和谐波震颤事件的相关特征。2016年4月,Turrialba火山爆发前的数据对该检测算法进行了测试,准确率达到95%,召回率达到80%。哥斯达黎加火山发生的数千次音调事件激发了这个软件的开发,为我们提供了快速处理音调地震活动的能力。在过去三年中,使用该软件能够识别音调尾波事件的激增,其特征是频谱频率降低,在Turrialba和Rincón de la Vieja火山爆发活动之前。Tonus代表了对火山地震学研究和监测的重大贡献,成功地弥合了学术方法和实际天文台应用之间的差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Geosciences
Computers & Geosciences 地学-地球科学综合
CiteScore
9.30
自引率
6.80%
发文量
164
审稿时长
3.4 months
期刊介绍: Computers & Geosciences publishes high impact, original research at the interface between Computer Sciences and Geosciences. Publications should apply modern computer science paradigms, whether computational or informatics-based, to address problems in the geosciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信