Microwave-assisted facile synthesis of graphitic-C3N4/reduced graphene oxide/MoS2 composite as the bifunctional electrocatalyst for electrochemical water splitting

IF 6.7 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Sumanta Sahoo , Abdullah Al Mahmud , Ankur Sood , Ganesh Dhakal , Santosh K. Tiwari , Sunmi Zo , Hong Mi Kim , Sung Soo Han
{"title":"Microwave-assisted facile synthesis of graphitic-C3N4/reduced graphene oxide/MoS2 composite as the bifunctional electrocatalyst for electrochemical water splitting","authors":"Sumanta Sahoo ,&nbsp;Abdullah Al Mahmud ,&nbsp;Ankur Sood ,&nbsp;Ganesh Dhakal ,&nbsp;Santosh K. Tiwari ,&nbsp;Sunmi Zo ,&nbsp;Hong Mi Kim ,&nbsp;Sung Soo Han","doi":"10.1016/j.jsamd.2024.100843","DOIUrl":null,"url":null,"abstract":"<div><div>Bifunctional electrocatalysts have shown considerable research attention in the field of water splitting in the last few years. The current work reports a simple microwave (MW)-assisted synthetic approach for the fabrication of nanocomposite based on graphitic-C<sub>3</sub>N<sub>4</sub>, reduced graphene oxide (rGO), and MoS<sub>2</sub>. Notably, the ternary composite was synthesized through ultrafast MW irradiation within a short duration by a cost-effective synthetic route. The synthesized composite served as the suitable electrocatalyst for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The overpotential of the composite was 172 mV for HER and 380 mV for OER. Moreover, the Tafel slopes for HER and OER were 147 and 97 mV dec<sup>−1</sup> for HER and OER, respectively. It is further interesting to note that the composite also displayed admirable stability of 24 h for overall water splitting. Inclusively, the current work demonstrated an efficient rGO-supported MW-assisted inexpensive synthetic approach for the development of 2D bifunctional electrocatalysts.</div></div>","PeriodicalId":17219,"journal":{"name":"Journal of Science: Advanced Materials and Devices","volume":"10 1","pages":"Article 100843"},"PeriodicalIF":6.7000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science: Advanced Materials and Devices","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468217924001746","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Bifunctional electrocatalysts have shown considerable research attention in the field of water splitting in the last few years. The current work reports a simple microwave (MW)-assisted synthetic approach for the fabrication of nanocomposite based on graphitic-C3N4, reduced graphene oxide (rGO), and MoS2. Notably, the ternary composite was synthesized through ultrafast MW irradiation within a short duration by a cost-effective synthetic route. The synthesized composite served as the suitable electrocatalyst for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The overpotential of the composite was 172 mV for HER and 380 mV for OER. Moreover, the Tafel slopes for HER and OER were 147 and 97 mV dec−1 for HER and OER, respectively. It is further interesting to note that the composite also displayed admirable stability of 24 h for overall water splitting. Inclusively, the current work demonstrated an efficient rGO-supported MW-assisted inexpensive synthetic approach for the development of 2D bifunctional electrocatalysts.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Science: Advanced Materials and Devices
Journal of Science: Advanced Materials and Devices Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
11.90
自引率
2.50%
发文量
88
审稿时长
47 days
期刊介绍: In 1985, the Journal of Science was founded as a platform for publishing national and international research papers across various disciplines, including natural sciences, technology, social sciences, and humanities. Over the years, the journal has experienced remarkable growth in terms of quality, size, and scope. Today, it encompasses a diverse range of publications dedicated to academic research. Considering the rapid expansion of materials science, we are pleased to introduce the Journal of Science: Advanced Materials and Devices. This new addition to our journal series offers researchers an exciting opportunity to publish their work on all aspects of materials science and technology within the esteemed Journal of Science. With this development, we aim to revolutionize the way research in materials science is expressed and organized, further strengthening our commitment to promoting outstanding research across various scientific and technological fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信