The formation of strain-induced martensite and its influence on hydrogen compatibility of metastable austenitic stainless steels: A state-of knowledge review
IF 6.7 3区 材料科学Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zhiyang Fan , Xiaoyu Gong , Bei Li , Peichen Yu , Xinyang Liu , Hongyu Zhou , Yinsheng He , Wenyue Zheng
{"title":"The formation of strain-induced martensite and its influence on hydrogen compatibility of metastable austenitic stainless steels: A state-of knowledge review","authors":"Zhiyang Fan , Xiaoyu Gong , Bei Li , Peichen Yu , Xinyang Liu , Hongyu Zhou , Yinsheng He , Wenyue Zheng","doi":"10.1016/j.jsamd.2024.100842","DOIUrl":null,"url":null,"abstract":"<div><div>Austenitic stainless stainless steels (ASS) are an important type of material used in hydrogen storage and handling equipment because of their exceptional corrosion resistance and mechanical qualities. Nevertheless, the hydrogen sensitivities of metastable ASS would be a notable concern since the strain-induced martensitic transformation (SIMT) can take place during the fabrication process. Hence, we performed tensile experiments on 304L and 316L alloys containing varying amounts of Ni content, simulating actual material deformation conditions. We conducted an analysis of the impact of Ni content on SIMT and presented a detailed description of the martensite nucleation and growth process. Subsequently, we conducted an analysis of the orientation connection of the martensitic transition using TEM. Subsequently, we summarized the effects of SIMT and hydrogen on the tensile, creep, and fatigue properties of materials. It was generally observed that in a hydrogen environment, SIMT, as a high-speed diffusion channel for hydrogen, exacerbates the detrimental effect of hydrogen on the material's mechanical properties. The significance of minimizing SIMT to enhance the hydrogen performance of metastable ASS is emphasized, and this article concluded by summarizing the practical methods for reducing the SIMT: optimizing the alloy composition, controlling the deformation temperature, and using post-forming annealing treatment. Through discussion, it was concluded that controlling the deformation temperature is not recommended as a method to eliminate strain-induced martensite.</div></div>","PeriodicalId":17219,"journal":{"name":"Journal of Science: Advanced Materials and Devices","volume":"10 1","pages":"Article 100842"},"PeriodicalIF":6.7000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science: Advanced Materials and Devices","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468217924001734","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Austenitic stainless stainless steels (ASS) are an important type of material used in hydrogen storage and handling equipment because of their exceptional corrosion resistance and mechanical qualities. Nevertheless, the hydrogen sensitivities of metastable ASS would be a notable concern since the strain-induced martensitic transformation (SIMT) can take place during the fabrication process. Hence, we performed tensile experiments on 304L and 316L alloys containing varying amounts of Ni content, simulating actual material deformation conditions. We conducted an analysis of the impact of Ni content on SIMT and presented a detailed description of the martensite nucleation and growth process. Subsequently, we conducted an analysis of the orientation connection of the martensitic transition using TEM. Subsequently, we summarized the effects of SIMT and hydrogen on the tensile, creep, and fatigue properties of materials. It was generally observed that in a hydrogen environment, SIMT, as a high-speed diffusion channel for hydrogen, exacerbates the detrimental effect of hydrogen on the material's mechanical properties. The significance of minimizing SIMT to enhance the hydrogen performance of metastable ASS is emphasized, and this article concluded by summarizing the practical methods for reducing the SIMT: optimizing the alloy composition, controlling the deformation temperature, and using post-forming annealing treatment. Through discussion, it was concluded that controlling the deformation temperature is not recommended as a method to eliminate strain-induced martensite.
期刊介绍:
In 1985, the Journal of Science was founded as a platform for publishing national and international research papers across various disciplines, including natural sciences, technology, social sciences, and humanities. Over the years, the journal has experienced remarkable growth in terms of quality, size, and scope. Today, it encompasses a diverse range of publications dedicated to academic research.
Considering the rapid expansion of materials science, we are pleased to introduce the Journal of Science: Advanced Materials and Devices. This new addition to our journal series offers researchers an exciting opportunity to publish their work on all aspects of materials science and technology within the esteemed Journal of Science.
With this development, we aim to revolutionize the way research in materials science is expressed and organized, further strengthening our commitment to promoting outstanding research across various scientific and technological fields.