A comprehensive study on supervised single-channel noisy speech separation with multi-task learning

IF 2.4 3区 计算机科学 Q2 ACOUSTICS
Shaoxiang Dang , Tetsuya Matsumoto , Yoshinori Takeuchi , Hiroaki Kudo
{"title":"A comprehensive study on supervised single-channel noisy speech separation with multi-task learning","authors":"Shaoxiang Dang ,&nbsp;Tetsuya Matsumoto ,&nbsp;Yoshinori Takeuchi ,&nbsp;Hiroaki Kudo","doi":"10.1016/j.specom.2024.103162","DOIUrl":null,"url":null,"abstract":"<div><div>This research presents a comprehensive investigation and comparison of noisy speech separation methods using multi-task learning. First, we categorize all methods into two pipelines: enhancement priority pipeline (EPP) and separation priority pipeline (SPP), based on whether prioritizing enhancement or separation. Next, we classify each pipeline into shared encoder–decoder scheme (SEDS) and independent encoder–decoder scheme (IEDS), depending on whether the two modules share the same encoder and decoder. Additionally, we introduce two types of intermediate structures between the two modules. One structure uses time–frequency (T–F) representations, while the other uses T–F masks. This article elaborates on the strengths and weaknesses of each approach, particularly in mitigating over-suppression and improving computational efficiency. Our experiments show substantial improvements in SPP with IEDS across multiple metrics on the LibriXmix dataset. In addition, by replacing the synthesis-based trick in the enhancement module, the model achieves superior generalization on the LibriCSS dataset.</div></div>","PeriodicalId":49485,"journal":{"name":"Speech Communication","volume":"167 ","pages":"Article 103162"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Speech Communication","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016763932400133X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

This research presents a comprehensive investigation and comparison of noisy speech separation methods using multi-task learning. First, we categorize all methods into two pipelines: enhancement priority pipeline (EPP) and separation priority pipeline (SPP), based on whether prioritizing enhancement or separation. Next, we classify each pipeline into shared encoder–decoder scheme (SEDS) and independent encoder–decoder scheme (IEDS), depending on whether the two modules share the same encoder and decoder. Additionally, we introduce two types of intermediate structures between the two modules. One structure uses time–frequency (T–F) representations, while the other uses T–F masks. This article elaborates on the strengths and weaknesses of each approach, particularly in mitigating over-suppression and improving computational efficiency. Our experiments show substantial improvements in SPP with IEDS across multiple metrics on the LibriXmix dataset. In addition, by replacing the synthesis-based trick in the enhancement module, the model achieves superior generalization on the LibriCSS dataset.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Speech Communication
Speech Communication 工程技术-计算机:跨学科应用
CiteScore
6.80
自引率
6.20%
发文量
94
审稿时长
19.2 weeks
期刊介绍: Speech Communication is an interdisciplinary journal whose primary objective is to fulfil the need for the rapid dissemination and thorough discussion of basic and applied research results. The journal''s primary objectives are: • to present a forum for the advancement of human and human-machine speech communication science; • to stimulate cross-fertilization between different fields of this domain; • to contribute towards the rapid and wide diffusion of scientifically sound contributions in this domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信