Improved coordinate attention network for classification of dangerous driving behavior

Wen Ni , Lufeng Bai
{"title":"Improved coordinate attention network for classification of dangerous driving behavior","authors":"Wen Ni ,&nbsp;Lufeng Bai","doi":"10.1016/j.fraope.2025.100219","DOIUrl":null,"url":null,"abstract":"<div><div>With the rise of traffic accidents caused by unsafe driving behaviors, the accurate classification of these behaviors has become a pressing issue in intelligent transportation systems. Traditional methods such as AlexNet and VGG, while effective for general image recognition tasks, fail to capture the complex and subtle features necessary for recognizing dangerous driving behaviors. To address this, we propose an improved residual network model, SC-ResNet, which integrates a coordinate attention mechanism and SIFT (Scale-Invariant Feature Transform) feature fusion to enhance classification accuracy under varying conditions including rotation, scale, and illumination changes. Furthermore, we introduce a multi-scale feature pyramid network and a novel joint loss function to better handle the multi-class classification imbalance problem. Experimental results show that our model outperforms traditional networks by <span><math><mrow><mn>0</mn><mo>.</mo><mn>6</mn><mtext>%</mtext></mrow></math></span> to <span><math><mrow><mn>4</mn><mo>.</mo><mn>7</mn><mtext>%</mtext></mrow></math></span> in classification accuracy. Future research will focus on improving model generalization and computational efficiency for real-time applications.</div></div>","PeriodicalId":100554,"journal":{"name":"Franklin Open","volume":"10 ","pages":"Article 100219"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Franklin Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277318632500009X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the rise of traffic accidents caused by unsafe driving behaviors, the accurate classification of these behaviors has become a pressing issue in intelligent transportation systems. Traditional methods such as AlexNet and VGG, while effective for general image recognition tasks, fail to capture the complex and subtle features necessary for recognizing dangerous driving behaviors. To address this, we propose an improved residual network model, SC-ResNet, which integrates a coordinate attention mechanism and SIFT (Scale-Invariant Feature Transform) feature fusion to enhance classification accuracy under varying conditions including rotation, scale, and illumination changes. Furthermore, we introduce a multi-scale feature pyramid network and a novel joint loss function to better handle the multi-class classification imbalance problem. Experimental results show that our model outperforms traditional networks by 0.6% to 4.7% in classification accuracy. Future research will focus on improving model generalization and computational efficiency for real-time applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信