Curvature pinching for three-dimensional submanifolds in a Riemannian manifold

IF 0.6 4区 数学 Q3 MATHEMATICS
Juanru Gu , Yao Lu , Hongwei Xu , Entao Zhao
{"title":"Curvature pinching for three-dimensional submanifolds in a Riemannian manifold","authors":"Juanru Gu ,&nbsp;Yao Lu ,&nbsp;Hongwei Xu ,&nbsp;Entao Zhao","doi":"10.1016/j.difgeo.2025.102234","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msup><mrow><mi>M</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> be an oriented submanifold with parallel mean curvature vector in a complete simply connected Riemannian manifold <span><math><msup><mrow><mi>N</mi></mrow><mrow><mn>3</mn><mo>+</mo><mi>p</mi></mrow></msup></math></span>. When the mean curvature <span><math><mi>H</mi><mo>=</mo><mn>0</mn></math></span>, i.e., <em>M</em> is minimal, we prove that there exists a constant <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>p</mi><mo>)</mo><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>, such that if <span><math><msub><mrow><mover><mrow><mi>K</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>N</mi></mrow></msub><mo>∈</mo><mo>[</mo><msub><mrow><mi>δ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>p</mi><mo>)</mo><mo>,</mo><mn>1</mn><mo>]</mo></math></span>, and if <em>M</em> has a lower bound for Ricci curvature and an upper bound for scalar curvature, then <span><math><msup><mrow><mi>N</mi></mrow><mrow><mn>3</mn><mo>+</mo><mi>p</mi></mrow></msup></math></span> is isometric to <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn><mo>+</mo><mi>p</mi></mrow></msup></math></span>. Moreover, <em>M</em> is the totally geodesic sphere <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. This is a generalization of Shen and Li's results <span><span>[10]</span></span>, <span><span>[14]</span></span>. When the ambient manifold is a space form, we improve the geometric rigidity theorem due to Xu-Gu <span><span>[19]</span></span> for the codimension is not more than 2 and <span><math><mi>H</mi><mo>≠</mo><mn>0</mn></math></span>.</div></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"99 ","pages":"Article 102234"},"PeriodicalIF":0.6000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224525000099","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let M3 be an oriented submanifold with parallel mean curvature vector in a complete simply connected Riemannian manifold N3+p. When the mean curvature H=0, i.e., M is minimal, we prove that there exists a constant δ1(p)(0,1), such that if KN[δ1(p),1], and if M has a lower bound for Ricci curvature and an upper bound for scalar curvature, then N3+p is isometric to S3+p. Moreover, M is the totally geodesic sphere S3. This is a generalization of Shen and Li's results [10], [14]. When the ambient manifold is a space form, we improve the geometric rigidity theorem due to Xu-Gu [19] for the codimension is not more than 2 and H0.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信