Spacelike foliations on Lorentz manifolds

IF 0.6 4区 数学 Q3 MATHEMATICS
Aldir Brasil , Sharief Deshmukh , Euripedes da Silva , Paulo Sousa
{"title":"Spacelike foliations on Lorentz manifolds","authors":"Aldir Brasil ,&nbsp;Sharief Deshmukh ,&nbsp;Euripedes da Silva ,&nbsp;Paulo Sousa","doi":"10.1016/j.difgeo.2025.102235","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we study the geometric properties of spacelike foliations by hypersurfaces on a Lorentz manifold. We investigate conditions for the leaves being stable, totally geodesic or totally umbilical. We consider that <span><math><msup><mrow><mover><mrow><mi>M</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span> is equipped with a timelike closed conformal vector field <em>ξ</em>. If the foliation has constant mean curvature, we show that the leaves are stable. When the leaves are compact spacelike hypersurfaces we show that, under certain conditions, its are totally umbilic hypersurfaces. In the case of foliations by complete noncompact hypersurfaces, we using a Maximum Principle at infinity to conclude that the foliation is totally geodesic.</div></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"99 ","pages":"Article 102235"},"PeriodicalIF":0.6000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224525000105","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we study the geometric properties of spacelike foliations by hypersurfaces on a Lorentz manifold. We investigate conditions for the leaves being stable, totally geodesic or totally umbilical. We consider that Mn+1 is equipped with a timelike closed conformal vector field ξ. If the foliation has constant mean curvature, we show that the leaves are stable. When the leaves are compact spacelike hypersurfaces we show that, under certain conditions, its are totally umbilic hypersurfaces. In the case of foliations by complete noncompact hypersurfaces, we using a Maximum Principle at infinity to conclude that the foliation is totally geodesic.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信