Aldir Brasil , Sharief Deshmukh , Euripedes da Silva , Paulo Sousa
{"title":"Spacelike foliations on Lorentz manifolds","authors":"Aldir Brasil , Sharief Deshmukh , Euripedes da Silva , Paulo Sousa","doi":"10.1016/j.difgeo.2025.102235","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we study the geometric properties of spacelike foliations by hypersurfaces on a Lorentz manifold. We investigate conditions for the leaves being stable, totally geodesic or totally umbilical. We consider that <span><math><msup><mrow><mover><mrow><mi>M</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span> is equipped with a timelike closed conformal vector field <em>ξ</em>. If the foliation has constant mean curvature, we show that the leaves are stable. When the leaves are compact spacelike hypersurfaces we show that, under certain conditions, its are totally umbilic hypersurfaces. In the case of foliations by complete noncompact hypersurfaces, we using a Maximum Principle at infinity to conclude that the foliation is totally geodesic.</div></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"99 ","pages":"Article 102235"},"PeriodicalIF":0.6000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224525000105","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we study the geometric properties of spacelike foliations by hypersurfaces on a Lorentz manifold. We investigate conditions for the leaves being stable, totally geodesic or totally umbilical. We consider that is equipped with a timelike closed conformal vector field ξ. If the foliation has constant mean curvature, we show that the leaves are stable. When the leaves are compact spacelike hypersurfaces we show that, under certain conditions, its are totally umbilic hypersurfaces. In the case of foliations by complete noncompact hypersurfaces, we using a Maximum Principle at infinity to conclude that the foliation is totally geodesic.
期刊介绍:
Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.