Comparison between machine learning classification and trajectory-based change detection for identifying eucalyptus areas in Landsat time series

IF 3.8 Q2 ENVIRONMENTAL SCIENCES
Debora da Paz Gomes Brandão Ferraz, Raúl Sánchez Vicens
{"title":"Comparison between machine learning classification and trajectory-based change detection for identifying eucalyptus areas in Landsat time series","authors":"Debora da Paz Gomes Brandão Ferraz,&nbsp;Raúl Sánchez Vicens","doi":"10.1016/j.rsase.2024.101444","DOIUrl":null,"url":null,"abstract":"<div><div>In forestry, where species management has inter-annual durations, time series longer than one year have been used to map planted areas, estimate biophysical parameters, and determine planting age. Eucalyptus plantations have characteristics that enhance the use of time series in their classification, such as clear-cutting before planting or previous rotation and the rapid growth of large vegetation cover, which remains stable throughout the rotation period. This article compares the performance of two classification methods for mapping Eucalyptus areas: an object-oriented classification (GEOBIA) using products generated by the LandTrendr change detection algorithm based on trajectories and a classification using machine learning (random forest). Using a Landsat time series from 1985 to 2020, tests were conducted in a pilot area in Rio de Janeiro, Brazil. Both methods showed high accuracy in detecting Eucalyptus areas. However, the trajectory-based classification proved slightly superior, achieving a global accuracy of 0.988 and an F-Score of 0.975, while the classification using the random forest algorithm achieved a global accuracy of 0.954 and an F-score of 0.849. Regarding identifying the initial year of planting, both methods proved effective without showing significant differences (p-value = 0.1003). However, detecting the initial year using the LandTrendr algorithm proved more assertive. Both methods revealed periods of increase and stabilization in Eucalyptus planting throughout the time series, proving promising for determining the location and age of each stand and, thus, obtaining information about the time of use of that area for Eucalyptus cultivation.</div></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"37 ","pages":"Article 101444"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352938524003082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In forestry, where species management has inter-annual durations, time series longer than one year have been used to map planted areas, estimate biophysical parameters, and determine planting age. Eucalyptus plantations have characteristics that enhance the use of time series in their classification, such as clear-cutting before planting or previous rotation and the rapid growth of large vegetation cover, which remains stable throughout the rotation period. This article compares the performance of two classification methods for mapping Eucalyptus areas: an object-oriented classification (GEOBIA) using products generated by the LandTrendr change detection algorithm based on trajectories and a classification using machine learning (random forest). Using a Landsat time series from 1985 to 2020, tests were conducted in a pilot area in Rio de Janeiro, Brazil. Both methods showed high accuracy in detecting Eucalyptus areas. However, the trajectory-based classification proved slightly superior, achieving a global accuracy of 0.988 and an F-Score of 0.975, while the classification using the random forest algorithm achieved a global accuracy of 0.954 and an F-score of 0.849. Regarding identifying the initial year of planting, both methods proved effective without showing significant differences (p-value = 0.1003). However, detecting the initial year using the LandTrendr algorithm proved more assertive. Both methods revealed periods of increase and stabilization in Eucalyptus planting throughout the time series, proving promising for determining the location and age of each stand and, thus, obtaining information about the time of use of that area for Eucalyptus cultivation.
机器学习分类与基于轨迹的变化检测在Landsat时间序列中识别桉树区域的比较
在林业中,物种管理具有年际持续时间,长于一年的时间序列被用于绘制种植区域、估计生物物理参数和确定种植年龄。桉树人工林具有时间序列分类的特点,如种植前或轮作前的砍伐和大植被覆盖的快速增长,在整个轮作期间保持稳定。本文比较了绘制桉树区域的两种分类方法的性能:使用基于轨迹的LandTrendr变化检测算法生成的产品的面向对象分类(GEOBIA)和使用机器学习(随机森林)的分类。利用1985年至2020年的地球资源卫星时间序列,在巴西里约热内卢的一个试点地区进行了试验。两种方法对桉树面积的检测精度均较高。然而,基于轨迹的分类算法略显优势,其全局精度为0.988,F-Score为0.975,而使用随机森林算法的分类算法的全局精度为0.954,F-Score为0.849。在确定种植起始年份方面,两种方法均有效,差异不显著(p值= 0.1003)。然而,使用LandTrendr算法检测最初年份被证明更加自信。这两种方法都揭示了桉树种植在整个时间序列中的增长和稳定时期,证明了确定每个林分的位置和年龄的希望,从而获得该地区桉树种植使用时间的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
8.50%
发文量
204
审稿时长
65 days
期刊介绍: The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信