A.M. de Villiers , J. Stadler , G. Limbert , A.T. McBride , A. Javili , P. Steinmann
{"title":"Continuum-kinematics-inspired peridynamics for transverse isotropy","authors":"A.M. de Villiers , J. Stadler , G. Limbert , A.T. McBride , A. Javili , P. Steinmann","doi":"10.1016/j.cma.2025.117780","DOIUrl":null,"url":null,"abstract":"<div><div>Accounting for the combined effects of mechanical anisotropy and nonlocality is critical for capturing a wide range of material behaviour. Continuum-kinematics-inspired peridynamics (CPD) provides the essential underpinning theoretical and numerical framework to realise this objective. The formalism of rational mechanics is employed here to rigorously extend CPD to the important case of transverse isotropy at finite deformations while retaining the fundamental deformation measures of length, area and volume intrinsic to classical continuum mechanics. Details of the anisotropic contribution to the potential energy density due to length, area and volume elements are given. A series of numerical examples serve to elucidate the theory presented.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"437 ","pages":"Article 117780"},"PeriodicalIF":6.9000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782525000520","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Accounting for the combined effects of mechanical anisotropy and nonlocality is critical for capturing a wide range of material behaviour. Continuum-kinematics-inspired peridynamics (CPD) provides the essential underpinning theoretical and numerical framework to realise this objective. The formalism of rational mechanics is employed here to rigorously extend CPD to the important case of transverse isotropy at finite deformations while retaining the fundamental deformation measures of length, area and volume intrinsic to classical continuum mechanics. Details of the anisotropic contribution to the potential energy density due to length, area and volume elements are given. A series of numerical examples serve to elucidate the theory presented.
期刊介绍:
Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.