{"title":"Deep Ritz - Finite element methods: Neural network methods trained with finite elements","authors":"Georgios Grekas , Charalambos G. Makridakis","doi":"10.1016/j.cma.2025.117798","DOIUrl":null,"url":null,"abstract":"<div><div>While much attention of neural network methods is devoted to high-dimensional PDE problems, in this work we consider methods designed to work for elliptic problems on domains <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></math></span>, <span><math><mrow><mi>d</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn></mrow></math></span> in association with more standard finite elements. We suggest to connect finite elements and neural network approximations through <em>training</em>, i.e., using finite element spaces to compute the integrals appearing in the loss functionals. This approach, retains the simplicity of classical neural network methods for PDEs, uses well established finite element tools (and software) to compute the integrals involved and it gains in efficiency and accuracy. We demonstrate that the proposed methods are stable and furthermore, we establish that the resulting approximations converge to the solutions of the PDE. Numerical results indicating the efficiency and robustness of the proposed algorithms are presented.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"437 ","pages":"Article 117798"},"PeriodicalIF":6.9000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782525000702","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
While much attention of neural network methods is devoted to high-dimensional PDE problems, in this work we consider methods designed to work for elliptic problems on domains , in association with more standard finite elements. We suggest to connect finite elements and neural network approximations through training, i.e., using finite element spaces to compute the integrals appearing in the loss functionals. This approach, retains the simplicity of classical neural network methods for PDEs, uses well established finite element tools (and software) to compute the integrals involved and it gains in efficiency and accuracy. We demonstrate that the proposed methods are stable and furthermore, we establish that the resulting approximations converge to the solutions of the PDE. Numerical results indicating the efficiency and robustness of the proposed algorithms are presented.
期刊介绍:
Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.