Impact of gravitational collapse exhibiting loop quantum black holes on thermodynamical features and weak gravitational lensing

IF 5 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Allah Ditta , Abdelmalek Bouzenada , G. Mustafa , Faisal Javed , Fakhranda Afandi , Asif Mahmood
{"title":"Impact of gravitational collapse exhibiting loop quantum black holes on thermodynamical features and weak gravitational lensing","authors":"Allah Ditta ,&nbsp;Abdelmalek Bouzenada ,&nbsp;G. Mustafa ,&nbsp;Faisal Javed ,&nbsp;Fakhranda Afandi ,&nbsp;Asif Mahmood","doi":"10.1016/j.dark.2025.101818","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the loop quantum black hole (LQBH) model, focusing on its thermodynamic stability and gravitational lensing properties. We further examine the thermodynamic characteristics of these black holes, specifically their stability, by analyzing potential phase transitions and energy emissions. In the context of thermodynamic analysis, we discuss the temperature, specific heat, and Gibbs free energy. We also study the effects of weak gravitational lensing within these black holes under different conditions: uniform plasma, non-uniform plasma, and a non-singular isothermal gas with spherical symmetry, calculating the deflection angle and analyzing the influence of black hole parameters on the deflection angle. Additionally, we discuss the magnification of gravitationally lensed images, addressing the distinct lensing effects resulting from uniform and non-uniform plasma by analyzing the total deflection angle in the plasma field.</div></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"47 ","pages":"Article 101818"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Dark Universe","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212686425000135","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the loop quantum black hole (LQBH) model, focusing on its thermodynamic stability and gravitational lensing properties. We further examine the thermodynamic characteristics of these black holes, specifically their stability, by analyzing potential phase transitions and energy emissions. In the context of thermodynamic analysis, we discuss the temperature, specific heat, and Gibbs free energy. We also study the effects of weak gravitational lensing within these black holes under different conditions: uniform plasma, non-uniform plasma, and a non-singular isothermal gas with spherical symmetry, calculating the deflection angle and analyzing the influence of black hole parameters on the deflection angle. Additionally, we discuss the magnification of gravitationally lensed images, addressing the distinct lensing effects resulting from uniform and non-uniform plasma by analyzing the total deflection angle in the plasma field.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics of the Dark Universe
Physics of the Dark Universe ASTRONOMY & ASTROPHYSICS-
CiteScore
9.60
自引率
7.30%
发文量
118
审稿时长
61 days
期刊介绍: Physics of the Dark Universe is an innovative online-only journal that offers rapid publication of peer-reviewed, original research articles considered of high scientific impact. The journal is focused on the understanding of Dark Matter, Dark Energy, Early Universe, gravitational waves and neutrinos, covering all theoretical, experimental and phenomenological aspects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信