Imprints of quantum gravity on periastron precession and trajectories around a black hole

IF 5 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Asifa Ashraf , Abdelmalek Bouzenada , S.K. Maurya , Farruh Atamurotov , Phongpichit Channuie , Assmaa Abd-Elmonem , Nesreen Sirelkhtam Elmki Abdalla
{"title":"Imprints of quantum gravity on periastron precession and trajectories around a black hole","authors":"Asifa Ashraf ,&nbsp;Abdelmalek Bouzenada ,&nbsp;S.K. Maurya ,&nbsp;Farruh Atamurotov ,&nbsp;Phongpichit Channuie ,&nbsp;Assmaa Abd-Elmonem ,&nbsp;Nesreen Sirelkhtam Elmki Abdalla","doi":"10.1016/j.dark.2024.101787","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the motion of test particles around a spherically symmetric, non-rotating black hole within the framework of quantum gravity, emphasizing the impact of model parameters on particle dynamics. The black hole is characterized by its mass <span><math><mi>M</mi></math></span> and two dimensionless parameters, <span><math><mi>α</mi></math></span> and <span><math><mi>β</mi></math></span>. Using the effective potential method, we analyze the stability of circular orbits and derive analytical expressions for the energy and angular momentum of test particles as functions of the black hole parameters. Additionally, we examine effective forces, determine the innermost stable circular orbits, and numerically integrate the equations of motion to study diverse particle trajectories. Analytical formulas for radial, vertical, and orbital frequencies, as well as the periastron precession frequency, are found from the exploration of epicyclic oscillations close to the equatorial plane. Lastly, we determine the center-of-mass energy for particle collisions close to the black hole horizon. Our results provide insights into the interaction between quantum gravity effects and black hole dynamics, explaining the substantial influence of <span><math><mi>α</mi></math></span> and <span><math><mi>β</mi></math></span> on particle motion.</div></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"47 ","pages":"Article 101787"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Dark Universe","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212686424003704","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the motion of test particles around a spherically symmetric, non-rotating black hole within the framework of quantum gravity, emphasizing the impact of model parameters on particle dynamics. The black hole is characterized by its mass M and two dimensionless parameters, α and β. Using the effective potential method, we analyze the stability of circular orbits and derive analytical expressions for the energy and angular momentum of test particles as functions of the black hole parameters. Additionally, we examine effective forces, determine the innermost stable circular orbits, and numerically integrate the equations of motion to study diverse particle trajectories. Analytical formulas for radial, vertical, and orbital frequencies, as well as the periastron precession frequency, are found from the exploration of epicyclic oscillations close to the equatorial plane. Lastly, we determine the center-of-mass energy for particle collisions close to the black hole horizon. Our results provide insights into the interaction between quantum gravity effects and black hole dynamics, explaining the substantial influence of α and β on particle motion.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics of the Dark Universe
Physics of the Dark Universe ASTRONOMY & ASTROPHYSICS-
CiteScore
9.60
自引率
7.30%
发文量
118
审稿时长
61 days
期刊介绍: Physics of the Dark Universe is an innovative online-only journal that offers rapid publication of peer-reviewed, original research articles considered of high scientific impact. The journal is focused on the understanding of Dark Matter, Dark Energy, Early Universe, gravitational waves and neutrinos, covering all theoretical, experimental and phenomenological aspects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信