{"title":"Single- and multi-task linear models for ATMs fault classification in human-centered predictive maintenance","authors":"Riccardo Rosati , Luca Romeo , Adriano Mancini","doi":"10.1016/j.cie.2024.110763","DOIUrl":null,"url":null,"abstract":"<div><div>The recirculator, a complex component within Automated Teller Machines (ATMs) responsible for handling banknotes, poses a challenging task for fault diagnosis due to its intricate nature, which renders it impractical to integrate dedicated sensors and potential multiple faults. This paper presents advanced single-task (STL-LR) and multi-task (MTL-LR) logistic regression models explicitly designed for capturing specific and similar discriminative patterns of multiple faults. Our approach focuses on maintaining the expert human operator at the center of the model checking and development process (human-in-the-loop approach). This objective has been achieved by including training data extracted from the intervention management platform, which collects the annotations of human operators. By leveraging this data, our STL and MTL models enhance generalization performance, especially in cases where discrepancies exist between machine-reported errors and technician-observed anomalies. The results illustrate the potential of the STL-LR and MTL-LR models as the main core of PdM DSS to aid technicians in accurately pinpointing fault-prone areas. This research contributes to Industry 5.0 by presenting a novel predictive maintenance approach that evolves task-specific learning to the generalization advantages of MTL. This evolution holds promise for fostering more efficient and effective maintenance strategies in complex equipment environments.</div></div>","PeriodicalId":55220,"journal":{"name":"Computers & Industrial Engineering","volume":"200 ","pages":"Article 110763"},"PeriodicalIF":6.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Industrial Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360835224008854","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The recirculator, a complex component within Automated Teller Machines (ATMs) responsible for handling banknotes, poses a challenging task for fault diagnosis due to its intricate nature, which renders it impractical to integrate dedicated sensors and potential multiple faults. This paper presents advanced single-task (STL-LR) and multi-task (MTL-LR) logistic regression models explicitly designed for capturing specific and similar discriminative patterns of multiple faults. Our approach focuses on maintaining the expert human operator at the center of the model checking and development process (human-in-the-loop approach). This objective has been achieved by including training data extracted from the intervention management platform, which collects the annotations of human operators. By leveraging this data, our STL and MTL models enhance generalization performance, especially in cases where discrepancies exist between machine-reported errors and technician-observed anomalies. The results illustrate the potential of the STL-LR and MTL-LR models as the main core of PdM DSS to aid technicians in accurately pinpointing fault-prone areas. This research contributes to Industry 5.0 by presenting a novel predictive maintenance approach that evolves task-specific learning to the generalization advantages of MTL. This evolution holds promise for fostering more efficient and effective maintenance strategies in complex equipment environments.
期刊介绍:
Computers & Industrial Engineering (CAIE) is dedicated to researchers, educators, and practitioners in industrial engineering and related fields. Pioneering the integration of computers in research, education, and practice, industrial engineering has evolved to make computers and electronic communication integral to its domain. CAIE publishes original contributions focusing on the development of novel computerized methodologies to address industrial engineering problems. It also highlights the applications of these methodologies to issues within the broader industrial engineering and associated communities. The journal actively encourages submissions that push the boundaries of fundamental theories and concepts in industrial engineering techniques.