Human knowledge-based artificial intelligence methods for skin cancer management: Accuracy and interpretability study

Q2 Health Professions
Eman Rezk , Mohamed Eltorki , Wael El-Dakhakhni
{"title":"Human knowledge-based artificial intelligence methods for skin cancer management: Accuracy and interpretability study","authors":"Eman Rezk ,&nbsp;Mohamed Eltorki ,&nbsp;Wael El-Dakhakhni","doi":"10.1016/j.smhl.2025.100540","DOIUrl":null,"url":null,"abstract":"<div><div>Skin cancer management, including monitoring and excision, involves sophisticated decisions reliant on several interdependent factors. This complexity leads to a scarcity of data useful for skin cancer management. Deep learning achieved massive success in computer vision due to its ability to extract representative features from images. However, deep learning methods require large amounts of data to develop accurate models, whereas machine learning methods perform well with small datasets. In this work, we aim to compare the accuracy and interpretability of skin cancer management prediction 1) using deep learning and machine learning methods and 2) utilizing various inputs including clinical images, dermoscopic images, and lesion clinical tabular features created by experts to represent lesion characteristics. We implemented two approaches, a deep learning pipeline for feature extraction and classification trained on different input modalities including images and lesion clinical features. The second approach uses lesion clinical features to train machine learning classifiers. The results show that the machine learning approach trained on clinical features achieves higher accuracy (0.80) and higher area under the curve (0.92) compared to the deep learning pipeline trained on skin images and lesion clinical features which achieves an accuracy of 0.66 and area under the curve of 0.74. Additionally, the machine learning approach provides more informative and understandable interpretations of the results. This work emphasizes the significance of utilizing human knowledge in developing precise and transparent predictive models. In addition, our findings highlight the potential of machine learning methods in predicting lesion management in situation where the data size is insufficient to leverage deep learning capabilities.</div></div>","PeriodicalId":37151,"journal":{"name":"Smart Health","volume":"36 ","pages":"Article 100540"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352648325000017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 0

Abstract

Skin cancer management, including monitoring and excision, involves sophisticated decisions reliant on several interdependent factors. This complexity leads to a scarcity of data useful for skin cancer management. Deep learning achieved massive success in computer vision due to its ability to extract representative features from images. However, deep learning methods require large amounts of data to develop accurate models, whereas machine learning methods perform well with small datasets. In this work, we aim to compare the accuracy and interpretability of skin cancer management prediction 1) using deep learning and machine learning methods and 2) utilizing various inputs including clinical images, dermoscopic images, and lesion clinical tabular features created by experts to represent lesion characteristics. We implemented two approaches, a deep learning pipeline for feature extraction and classification trained on different input modalities including images and lesion clinical features. The second approach uses lesion clinical features to train machine learning classifiers. The results show that the machine learning approach trained on clinical features achieves higher accuracy (0.80) and higher area under the curve (0.92) compared to the deep learning pipeline trained on skin images and lesion clinical features which achieves an accuracy of 0.66 and area under the curve of 0.74. Additionally, the machine learning approach provides more informative and understandable interpretations of the results. This work emphasizes the significance of utilizing human knowledge in developing precise and transparent predictive models. In addition, our findings highlight the potential of machine learning methods in predicting lesion management in situation where the data size is insufficient to leverage deep learning capabilities.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Smart Health
Smart Health Computer Science-Computer Science Applications
CiteScore
6.50
自引率
0.00%
发文量
81
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信