Implementing artificial intelligence for electrocardiogram interpretation: A case study

Jace C. Bradshaw , Emily Nagourney , McKenzie Warshel , P Logan Weygandt
{"title":"Implementing artificial intelligence for electrocardiogram interpretation: A case study","authors":"Jace C. Bradshaw ,&nbsp;Emily Nagourney ,&nbsp;McKenzie Warshel ,&nbsp;P Logan Weygandt","doi":"10.1016/j.jemrpt.2024.100132","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Artificial intelligence (AI) is expected to have a growing role in medical diagnostic interpretation and existing programs should be challenged with difficult cases in clinical practice senerios. An isolated posterior myocardial infarction (MI) is suggested by ST segment depression in the anteroseptal leads on a standard 12-lead electrocardiogram (ECG) and confirmed by the presence of 0.5mm ST segment elevation in any of the posterior leads (V7-V9). Isolated posterior MI is rare (potentially &lt;4 % of all MIs).</div></div><div><h3>Case report</h3><div>We present a case of a 79-year-old man who presented with intermittent chest pain and subtle ECG changes concerning for a posterior MI. His catheterization images confirm a completely occluded LCx artery. We also present the AI analysis of the ECG's crucial for making the diagnosis in this case.</div><div>Why should an Emergency Physician be aware of this?</div><div>Given the diagnostic challenge of posterior wall MIs with a standard 12-lead ECG, clinical suspicion for a posterior MI should remain high with any degree of ST segment depression in the anterior leads and prompt the emergency physician to obtain a posterior ECG. AI-based ECG interpretation was able to determine that this patient was having an occlusive myocardial infarction. We discuss how to utilize the third-party AI for diagnostic aid.</div></div>","PeriodicalId":73546,"journal":{"name":"JEM reports","volume":"4 1","pages":"Article 100132"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JEM reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773232024000622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Artificial intelligence (AI) is expected to have a growing role in medical diagnostic interpretation and existing programs should be challenged with difficult cases in clinical practice senerios. An isolated posterior myocardial infarction (MI) is suggested by ST segment depression in the anteroseptal leads on a standard 12-lead electrocardiogram (ECG) and confirmed by the presence of 0.5mm ST segment elevation in any of the posterior leads (V7-V9). Isolated posterior MI is rare (potentially <4 % of all MIs).

Case report

We present a case of a 79-year-old man who presented with intermittent chest pain and subtle ECG changes concerning for a posterior MI. His catheterization images confirm a completely occluded LCx artery. We also present the AI analysis of the ECG's crucial for making the diagnosis in this case.
Why should an Emergency Physician be aware of this?
Given the diagnostic challenge of posterior wall MIs with a standard 12-lead ECG, clinical suspicion for a posterior MI should remain high with any degree of ST segment depression in the anterior leads and prompt the emergency physician to obtain a posterior ECG. AI-based ECG interpretation was able to determine that this patient was having an occlusive myocardial infarction. We discuss how to utilize the third-party AI for diagnostic aid.
在心电图判读中应用人工智能:一个案例研究
人工智能(AI)有望在医学诊断解释中发挥越来越大的作用,现有的程序应该受到临床实践中疑难病例的挑战。在标准的12导联心电图(ECG)上,室间隔导联ST段下降提示孤立性后路心肌梗死(MI),并通过任何后路导联(V7-V9)出现0.5mm ST段升高证实。孤立的后路心肌梗死是罕见的(可能占所有心肌梗死的4%)。病例报告:我们报告一例79岁的男性患者,其表现为间歇性胸痛和轻微的ECG变化,与后部心肌梗死有关。他的导管造影图像证实LCx动脉完全闭塞。我们还介绍了人工智能分析的心电图的关键作出诊断,在这种情况下。为什么急诊医生应该意识到这一点?考虑到用标准12导联心电图诊断后壁心肌梗死的挑战,临床对后壁心肌梗死的怀疑应该保持在高水平,因为前导联有任何程度的ST段下降,并促使急诊医生获得后壁心电图。基于人工智能的心电图解释能够确定该患者患有闭塞性心肌梗死。我们讨论了如何利用第三方人工智能进行诊断辅助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
JEM reports
JEM reports Emergency Medicine
自引率
0.00%
发文量
0
审稿时长
54 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信