Observational constraints on a generalized equation of state model

IF 5 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
M. Koussour , S. Bekov , A. Syzdykova , S. Muminov , I. Ibragimov , J. Rayimbaev
{"title":"Observational constraints on a generalized equation of state model","authors":"M. Koussour ,&nbsp;S. Bekov ,&nbsp;A. Syzdykova ,&nbsp;S. Muminov ,&nbsp;I. Ibragimov ,&nbsp;J. Rayimbaev","doi":"10.1016/j.dark.2024.101799","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the cosmological implications of a generalized total equation of state (EoS) model by constraining its parameters using observational datasets to effectively characterize the universe’s expansion history and its dynamic properties. We introduce three parameters: <span><math><mi>α</mi></math></span>, <span><math><mi>β</mi></math></span>, and <span><math><mi>n</mi></math></span> to capture the EoS behavior across different evolutionary phases. Our analysis indicates that at high redshifts (<span><math><mrow><mi>z</mi><mo>≫</mo><mn>1</mn></mrow></math></span>), the EoS approaches a matter- or radiation-dominated regime, transitioning to a dark energy-dominated phase as <span><math><mrow><mi>z</mi><mo>→</mo><mo>−</mo><mn>1</mn></mrow></math></span>, where it tends toward a constant value <span><math><mi>α</mi></math></span>. Using a Markov Chain Monte Carlo (MCMC) method, we analyze a combined dataset that includes 31 data points from <span><math><mrow><mi>H</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span> and 1701 data points from the Pantheon+ dataset. The results reveal a smooth transition from deceleration to acceleration in the universe’s expansion, with current EoS values suggesting quintessence-like behavior. The model aligns with observations and indicates that dark energy is dynamically evolving rather than acting as a cosmological constant. Furthermore, energy conditions and stability analyses highlight the nature and future of dark energy. This parametrized EoS model thus offers a robust framework for understanding the complexities of dark energy and the evolution of the cosmos.</div></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"47 ","pages":"Article 101799"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Dark Universe","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212686424003820","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the cosmological implications of a generalized total equation of state (EoS) model by constraining its parameters using observational datasets to effectively characterize the universe’s expansion history and its dynamic properties. We introduce three parameters: α, β, and n to capture the EoS behavior across different evolutionary phases. Our analysis indicates that at high redshifts (z1), the EoS approaches a matter- or radiation-dominated regime, transitioning to a dark energy-dominated phase as z1, where it tends toward a constant value α. Using a Markov Chain Monte Carlo (MCMC) method, we analyze a combined dataset that includes 31 data points from H(z) and 1701 data points from the Pantheon+ dataset. The results reveal a smooth transition from deceleration to acceleration in the universe’s expansion, with current EoS values suggesting quintessence-like behavior. The model aligns with observations and indicates that dark energy is dynamically evolving rather than acting as a cosmological constant. Furthermore, energy conditions and stability analyses highlight the nature and future of dark energy. This parametrized EoS model thus offers a robust framework for understanding the complexities of dark energy and the evolution of the cosmos.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics of the Dark Universe
Physics of the Dark Universe ASTRONOMY & ASTROPHYSICS-
CiteScore
9.60
自引率
7.30%
发文量
118
审稿时长
61 days
期刊介绍: Physics of the Dark Universe is an innovative online-only journal that offers rapid publication of peer-reviewed, original research articles considered of high scientific impact. The journal is focused on the understanding of Dark Matter, Dark Energy, Early Universe, gravitational waves and neutrinos, covering all theoretical, experimental and phenomenological aspects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信