Machine learning for active sites prediction of quinoline derivatives

Jie Sun, Zi-Hao Li, Yi-Fei Yang, Shu-Yu Zhang
{"title":"Machine learning for active sites prediction of quinoline derivatives","authors":"Jie Sun,&nbsp;Zi-Hao Li,&nbsp;Yi-Fei Yang,&nbsp;Shu-Yu Zhang","doi":"10.1016/j.aichem.2024.100082","DOIUrl":null,"url":null,"abstract":"<div><div>Privileged structures, like quinoline, have diverse biological activities, and their synthetic versatility makes them crucial for drug design. In traditional synthesis methods, the C-H functionalization of quinoline can be effectively achieved using different conditions, especially transition metal catalysis. Machine learning (ML) techniques enable rapid prediction of C-H functionalization, facilitating drug design and synthesis. In this study, a generalizable approach to predict site selectivity is accomplished by using artificial neural network (ANN), which is suitable for the site prediction of derivatives of quinoline. In an 80/10/10 training/validation/testing split of 2467 compounds, the model takes SMILES strings as input format and uses six quantum chemical descriptors to identify reactive site(s) of the compound. On the external validation set, 86 .5% of all molecules were correctly predicted. This model allows chemists to rapidly predict which site is more likely to produce electrophilic substitution reaction.</div></div>","PeriodicalId":72302,"journal":{"name":"Artificial intelligence chemistry","volume":"3 1","pages":"Article 100082"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S294974772400040X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Privileged structures, like quinoline, have diverse biological activities, and their synthetic versatility makes them crucial for drug design. In traditional synthesis methods, the C-H functionalization of quinoline can be effectively achieved using different conditions, especially transition metal catalysis. Machine learning (ML) techniques enable rapid prediction of C-H functionalization, facilitating drug design and synthesis. In this study, a generalizable approach to predict site selectivity is accomplished by using artificial neural network (ANN), which is suitable for the site prediction of derivatives of quinoline. In an 80/10/10 training/validation/testing split of 2467 compounds, the model takes SMILES strings as input format and uses six quantum chemical descriptors to identify reactive site(s) of the compound. On the external validation set, 86 .5% of all molecules were correctly predicted. This model allows chemists to rapidly predict which site is more likely to produce electrophilic substitution reaction.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Artificial intelligence chemistry
Artificial intelligence chemistry Chemistry (General)
自引率
0.00%
发文量
0
审稿时长
21 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信