A human-on-the-loop approach for labelling seismic recordings from landslide site via a multi-class deep-learning based classification model

IF 5.7 Q1 ENVIRONMENTAL SCIENCES
Jiaxin Jiang , David Murray , Vladimir Stankovic , Lina Stankovic , Clement Hibert , Stella Pytharouli , Jean-Philippe Malet
{"title":"A human-on-the-loop approach for labelling seismic recordings from landslide site via a multi-class deep-learning based classification model","authors":"Jiaxin Jiang ,&nbsp;David Murray ,&nbsp;Vladimir Stankovic ,&nbsp;Lina Stankovic ,&nbsp;Clement Hibert ,&nbsp;Stella Pytharouli ,&nbsp;Jean-Philippe Malet","doi":"10.1016/j.srs.2024.100189","DOIUrl":null,"url":null,"abstract":"<div><div>With the increased frequency and intensity of landslides in recent years, there is growing research on timely detection of the underlying subsurface processes that contribute to these hazards. Recent advances in machine learning have introduced algorithms for classifying seismic events associated with landslides, such as earthquakes, rockfalls, and smaller quakes. However, the opaque, “black box” nature of deep learning algorithms has raised concerns of reliability and interpretability by Earth scientists and end-users, hesitant to adopt these models. Leveraging on recent recommendations on embedding humans in the Artificial Intelligence (AI) decision making process, particularly training and validation, we propose a methodology that incorporates data labelling, verification, and re-labelling through a multi-class convolutional neural network (CNN) supported by Explainable Artificial Intelligence (XAI) tools, specifically, Layer-wise Relevance Propagation (LRP). To ensure reproducibility, a catalogue of training events is provided as supplementary material. Evaluation from the French Seismologic and Geodetic Network (Résif) dataset, gathered in the Alps in France, demonstrate the effectiveness of the proposed methodology, achieving a recall/sensitivity of 97.3% for rockfalls and 68.4% for quakes.</div></div>","PeriodicalId":101147,"journal":{"name":"Science of Remote Sensing","volume":"11 ","pages":"Article 100189"},"PeriodicalIF":5.7000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666017224000737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

With the increased frequency and intensity of landslides in recent years, there is growing research on timely detection of the underlying subsurface processes that contribute to these hazards. Recent advances in machine learning have introduced algorithms for classifying seismic events associated with landslides, such as earthquakes, rockfalls, and smaller quakes. However, the opaque, “black box” nature of deep learning algorithms has raised concerns of reliability and interpretability by Earth scientists and end-users, hesitant to adopt these models. Leveraging on recent recommendations on embedding humans in the Artificial Intelligence (AI) decision making process, particularly training and validation, we propose a methodology that incorporates data labelling, verification, and re-labelling through a multi-class convolutional neural network (CNN) supported by Explainable Artificial Intelligence (XAI) tools, specifically, Layer-wise Relevance Propagation (LRP). To ensure reproducibility, a catalogue of training events is provided as supplementary material. Evaluation from the French Seismologic and Geodetic Network (Résif) dataset, gathered in the Alps in France, demonstrate the effectiveness of the proposed methodology, achieving a recall/sensitivity of 97.3% for rockfalls and 68.4% for quakes.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信