A comprehensive evaluation of deep vision transformers for road extraction from very-high-resolution satellite data

IF 5.7 Q1 ENVIRONMENTAL SCIENCES
Jan Bolcek , Mohamed Barakat A. Gibril , Rami Al-Ruzouq , Abdallah Shanableh , Ratiranjan Jena , Nezar Hammouri , Mourtadha Sarhan Sachit , Omid Ghorbanzadeh
{"title":"A comprehensive evaluation of deep vision transformers for road extraction from very-high-resolution satellite data","authors":"Jan Bolcek ,&nbsp;Mohamed Barakat A. Gibril ,&nbsp;Rami Al-Ruzouq ,&nbsp;Abdallah Shanableh ,&nbsp;Ratiranjan Jena ,&nbsp;Nezar Hammouri ,&nbsp;Mourtadha Sarhan Sachit ,&nbsp;Omid Ghorbanzadeh","doi":"10.1016/j.srs.2024.100190","DOIUrl":null,"url":null,"abstract":"<div><div>Transformer-based semantic segmentation architectures excel in extracting road networks from very-high-resolution (VHR) satellite images due to their ability to capture global contextual information. Nonetheless, there is a gap in research regarding their comparative effectiveness, efficiency, and performance in extracting road networks from multicity VHR data. This study evaluates 11 transformer-based models on three publicly available datasets (DeepGlobe Road Extraction Dataset, SpaceNet-3 Road Network Detection Dataset, and Massachusetts Road Dataset) to assess their performance, efficiency, and complexity in mapping road networks from multicity, multidate, and multisensory VHR optical satellite images. The evaluated models include Unified Perceptual Parsing for Scene Understanding (UperNet) based on the Swin transformer (UperNet-SwinT), and Multi-path Vision Transformer (UperNet-MpViT), Twins transformer, Segmenter, SegFormer, K-Net based on SwinT, Mask2Former based on SwinT (Mask2Former-SwinT), TopFormer, UniFormer, and PoolFormer. Results showed that the models recorded mean F-scores (mF-score) ranging from 82.22% to 90.70% for the DeepGlobe dataset, 58.98%–86.95% for the Massachusetts dataset, and 69.02%–86.14% for the SpaceNet-3 dataset. Mask2Former-SwinT, UperNet-MpViT, and SegFormer were the top performers among the evaluated models. The Mask2Former, based on the SwinT, demonstrated a strong balance of high performance across different satellite image datasets and moderate computational efficiency. This investigation aids in selecting the most suitable model for extracting road networks from remote sensing data.</div></div>","PeriodicalId":101147,"journal":{"name":"Science of Remote Sensing","volume":"11 ","pages":"Article 100190"},"PeriodicalIF":5.7000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666017224000749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Transformer-based semantic segmentation architectures excel in extracting road networks from very-high-resolution (VHR) satellite images due to their ability to capture global contextual information. Nonetheless, there is a gap in research regarding their comparative effectiveness, efficiency, and performance in extracting road networks from multicity VHR data. This study evaluates 11 transformer-based models on three publicly available datasets (DeepGlobe Road Extraction Dataset, SpaceNet-3 Road Network Detection Dataset, and Massachusetts Road Dataset) to assess their performance, efficiency, and complexity in mapping road networks from multicity, multidate, and multisensory VHR optical satellite images. The evaluated models include Unified Perceptual Parsing for Scene Understanding (UperNet) based on the Swin transformer (UperNet-SwinT), and Multi-path Vision Transformer (UperNet-MpViT), Twins transformer, Segmenter, SegFormer, K-Net based on SwinT, Mask2Former based on SwinT (Mask2Former-SwinT), TopFormer, UniFormer, and PoolFormer. Results showed that the models recorded mean F-scores (mF-score) ranging from 82.22% to 90.70% for the DeepGlobe dataset, 58.98%–86.95% for the Massachusetts dataset, and 69.02%–86.14% for the SpaceNet-3 dataset. Mask2Former-SwinT, UperNet-MpViT, and SegFormer were the top performers among the evaluated models. The Mask2Former, based on the SwinT, demonstrated a strong balance of high performance across different satellite image datasets and moderate computational efficiency. This investigation aids in selecting the most suitable model for extracting road networks from remote sensing data.
从高分辨率卫星数据中提取道路的深度视觉变压器的综合评价
基于变压器的语义分割架构在从高分辨率(VHR)卫星图像中提取道路网络方面表现出色,因为它们能够捕获全球上下文信息。尽管如此,在从多城市VHR数据中提取道路网的比较有效性、效率和性能方面的研究仍存在差距。本研究在三个公开可用的数据集(DeepGlobe道路提取数据集、SpaceNet-3道路网络检测数据集和马萨诸塞州道路数据集)上评估了11个基于变压器的模型,以评估它们在从多城市、多日期和多感官VHR光学卫星图像中绘制道路网络的性能、效率和复杂性。评估的模型包括基于Swin变压器(UperNet- swt)的场景理解统一感知解析(UperNet)、多路径视觉变压器(UperNet- mpvit)、基于SwinT的Twins变压器、Segmenter、SegFormer、K-Net、基于SwinT的Mask2Former (Mask2Former- swt)、TopFormer、UniFormer和PoolFormer。结果表明,模型的平均f分数(mF-score)在DeepGlobe数据集中为82.22% ~ 90.70%,在Massachusetts数据集中为58.98% ~ 86.95%,在SpaceNet-3数据集中为69.02% ~ 86.14%。mask2former - swt、UperNet-MpViT和SegFormer在评估模型中表现最好。基于SwinT的Mask2Former在不同卫星图像数据集上表现出高性能和中等计算效率的良好平衡。该研究有助于从遥感数据中选择最合适的道路网提取模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信