Developing a forest description from remote sensing: Insights from New Zealand

IF 5.7 Q1 ENVIRONMENTAL SCIENCES
Grant D. Pearse , Sadeepa Jayathunga , Nicolò Camarretta , Melanie E. Palmer , Benjamin S.C. Steer , Michael S. Watt , Pete Watt , Andrew Holdaway
{"title":"Developing a forest description from remote sensing: Insights from New Zealand","authors":"Grant D. Pearse ,&nbsp;Sadeepa Jayathunga ,&nbsp;Nicolò Camarretta ,&nbsp;Melanie E. Palmer ,&nbsp;Benjamin S.C. Steer ,&nbsp;Michael S. Watt ,&nbsp;Pete Watt ,&nbsp;Andrew Holdaway","doi":"10.1016/j.srs.2024.100183","DOIUrl":null,"url":null,"abstract":"<div><div>Remote sensing is increasingly being used to create large-scale forest descriptions. In New Zealand, where radiata pine (<em>Pinus radiata</em>) plantations dominate the forestry sector, the current national forest description lacks spatially explicit information and struggles to capture data on small-scale forests. This is important as these forests are expected to contribute significantly to future wood supply and carbon sequestration. This study demonstrates the development of a spatially explicit, remote sensing-based forest description for the Gisborne region, a major forest growing area. We combined deep learning-based forest mapping using high-resolution aerial imagery with regional airborne laser scanning (ALS) data to map all planted forest and estimate key attributes. The deep learning model accurately delineated planted forests, including large estates, small woodlots, and newly established stands as young as 3-years post planting. It achieved an intersection over union of 0.94, precision of 0.96, and recall of 0.98 on a withheld dataset. ALS-derived models for estimating mean top height, total stem volume, and stand age showed good performance (<em>R</em><sup>2</sup> = 0.94, 0.82, and 0.94 respectively). The resulting spatially explicit forest description provides wall-to-wall information on forest extent, age, and volume for all sizes of forest. This enables stratification by key variables for wood supply forecasting, harvest planning, and infrastructure investment decisions. We propose satellite-based harvest detection and digital photogrammetry to continuously update the initial forest description. This methodology enables near real-time monitoring of planted forests at all scales and is adaptable to other regions with similar data availability.</div></div>","PeriodicalId":101147,"journal":{"name":"Science of Remote Sensing","volume":"11 ","pages":"Article 100183"},"PeriodicalIF":5.7000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666017224000671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Remote sensing is increasingly being used to create large-scale forest descriptions. In New Zealand, where radiata pine (Pinus radiata) plantations dominate the forestry sector, the current national forest description lacks spatially explicit information and struggles to capture data on small-scale forests. This is important as these forests are expected to contribute significantly to future wood supply and carbon sequestration. This study demonstrates the development of a spatially explicit, remote sensing-based forest description for the Gisborne region, a major forest growing area. We combined deep learning-based forest mapping using high-resolution aerial imagery with regional airborne laser scanning (ALS) data to map all planted forest and estimate key attributes. The deep learning model accurately delineated planted forests, including large estates, small woodlots, and newly established stands as young as 3-years post planting. It achieved an intersection over union of 0.94, precision of 0.96, and recall of 0.98 on a withheld dataset. ALS-derived models for estimating mean top height, total stem volume, and stand age showed good performance (R2 = 0.94, 0.82, and 0.94 respectively). The resulting spatially explicit forest description provides wall-to-wall information on forest extent, age, and volume for all sizes of forest. This enables stratification by key variables for wood supply forecasting, harvest planning, and infrastructure investment decisions. We propose satellite-based harvest detection and digital photogrammetry to continuously update the initial forest description. This methodology enables near real-time monitoring of planted forests at all scales and is adaptable to other regions with similar data availability.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信