Salinity Indian Ocean Dipole: Another facet of the Indian Ocean Dipole phenomenon from satellite remote sensing

IF 5.7 Q1 ENVIRONMENTAL SCIENCES
Wei Shi , Menghua Wang
{"title":"Salinity Indian Ocean Dipole: Another facet of the Indian Ocean Dipole phenomenon from satellite remote sensing","authors":"Wei Shi ,&nbsp;Menghua Wang","doi":"10.1016/j.srs.2024.100184","DOIUrl":null,"url":null,"abstract":"<div><div>Using satellite-measured sea surface salinity (SSS) from the Aquarius and Soil Moisture Active Passive (SMAP) missions since 2011, we show that SSS in the Equatorial Indian Ocean (EIO) experienced dipolar changes in the well-defined east EIO and west EIO regions during the Indian Ocean Dipole (IOD) events. Similar to the concepts of dipole mode Index (DMI) and biological dipole mode index (BDMI), a salinity dipole mode index (SDMI) is proposed using the same definition for the east and west IOD zones. The results show that the salinity IOD in this study is in general co-located and co-incidental with the sea surface temperature (SST) IOD and biological IOD in previous studies. In the positive IOD event in 2019, the SSS anomaly was &gt;1 psu for most of the east IOD zone, while the average SSS in the west IOD zone was ∼0.2–0.3 psu lower than the climatology monthly SSS. The reversed SSS dipolar variability in the EIO was also found during the 2022 negative IOD event. The SSS anomaly difference between the east IOD zone and west IOD zone shows the same variation as the SST-based DMI and chlorophyll-a (Chl-a)-based BDMI. The in situ measurements show that, in the 2019 positive IOD event, the significant IOD-driven salinity change reached water depths at ∼70–80 m and ∼50 m in the east and the west IOD zones, respectively. Results also reveal that the salinity IOD is not only driven by the various ocean processes (e.g., upwelling, downwelling, propagation of the planetary waves, etc.), which are also the main driving forcing for the SST IOD and biological IOD, but also the precipitation and evaporation in the two IOD zones, especially in the west IOD zone. In addition to the traditional SST IOD and recently proposed biological IOD, the salinity IOD indeed features another facet of the entire IOD phenomenon.</div></div>","PeriodicalId":101147,"journal":{"name":"Science of Remote Sensing","volume":"11 ","pages":"Article 100184"},"PeriodicalIF":5.7000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666017224000683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Using satellite-measured sea surface salinity (SSS) from the Aquarius and Soil Moisture Active Passive (SMAP) missions since 2011, we show that SSS in the Equatorial Indian Ocean (EIO) experienced dipolar changes in the well-defined east EIO and west EIO regions during the Indian Ocean Dipole (IOD) events. Similar to the concepts of dipole mode Index (DMI) and biological dipole mode index (BDMI), a salinity dipole mode index (SDMI) is proposed using the same definition for the east and west IOD zones. The results show that the salinity IOD in this study is in general co-located and co-incidental with the sea surface temperature (SST) IOD and biological IOD in previous studies. In the positive IOD event in 2019, the SSS anomaly was >1 psu for most of the east IOD zone, while the average SSS in the west IOD zone was ∼0.2–0.3 psu lower than the climatology monthly SSS. The reversed SSS dipolar variability in the EIO was also found during the 2022 negative IOD event. The SSS anomaly difference between the east IOD zone and west IOD zone shows the same variation as the SST-based DMI and chlorophyll-a (Chl-a)-based BDMI. The in situ measurements show that, in the 2019 positive IOD event, the significant IOD-driven salinity change reached water depths at ∼70–80 m and ∼50 m in the east and the west IOD zones, respectively. Results also reveal that the salinity IOD is not only driven by the various ocean processes (e.g., upwelling, downwelling, propagation of the planetary waves, etc.), which are also the main driving forcing for the SST IOD and biological IOD, but also the precipitation and evaporation in the two IOD zones, especially in the west IOD zone. In addition to the traditional SST IOD and recently proposed biological IOD, the salinity IOD indeed features another facet of the entire IOD phenomenon.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信