Etiological connections between initial COVID-19 and two rare infectious diseases

Zhengjun Zhang
{"title":"Etiological connections between initial COVID-19 and two rare infectious diseases","authors":"Zhengjun Zhang","doi":"10.1016/j.abst.2024.12.001","DOIUrl":null,"url":null,"abstract":"<div><div>The origin of COVID-19 remains unclear despite extensive research. Theoretical models can simplify complex epigenetic landscapes by reducing vast methylation sites into manageable sets, revealing fundamental pathogen interactions that leap medical advances for the first time in tracing virus origin in the literature and practices. In our study, a max-logistic intelligence classifier analyzed 865,859 Infinium MethylationEPIC sites (CpGs), identifying eight CpGs that achieved 100 % accuracy in distinguishing COVID-19 patients from other respiratory disease patients and healthy controls. One CpG, cg07126281, linked to the SAMM50 gene, shares genetic ties with rare infectious diseases like Sennetsu fever and glanders, suggesting a potential connection between COVID-19 and these diseases, possibly transmitted through contaminated seafood or glanders-infected individuals. Identifying such links among 865,859 CpG sites is challenging, with a random correlation probability of less than one in ten million. However, the likelihood of finding meaningful associations with rare diseases lowers this probability to one in one hundred million, reinforcing the credibility of our findings. These results highlight the importance of investigating seafood markets and global supply chains in tracing COVID-19's origins and emphasize the need for ongoing biosafety and biosecurity measures to prevent future outbreaks.</div></div>","PeriodicalId":72080,"journal":{"name":"Advances in biomarker sciences and technology","volume":"7 ","pages":"Pages 8-20"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in biomarker sciences and technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2543106424000322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The origin of COVID-19 remains unclear despite extensive research. Theoretical models can simplify complex epigenetic landscapes by reducing vast methylation sites into manageable sets, revealing fundamental pathogen interactions that leap medical advances for the first time in tracing virus origin in the literature and practices. In our study, a max-logistic intelligence classifier analyzed 865,859 Infinium MethylationEPIC sites (CpGs), identifying eight CpGs that achieved 100 % accuracy in distinguishing COVID-19 patients from other respiratory disease patients and healthy controls. One CpG, cg07126281, linked to the SAMM50 gene, shares genetic ties with rare infectious diseases like Sennetsu fever and glanders, suggesting a potential connection between COVID-19 and these diseases, possibly transmitted through contaminated seafood or glanders-infected individuals. Identifying such links among 865,859 CpG sites is challenging, with a random correlation probability of less than one in ten million. However, the likelihood of finding meaningful associations with rare diseases lowers this probability to one in one hundred million, reinforcing the credibility of our findings. These results highlight the importance of investigating seafood markets and global supply chains in tracing COVID-19's origins and emphasize the need for ongoing biosafety and biosecurity measures to prevent future outbreaks.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in biomarker sciences and technology
Advances in biomarker sciences and technology Biotechnology, Clinical Biochemistry, Molecular Medicine, Public Health and Health Policy
自引率
0.00%
发文量
0
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信