On approximate reconfigurability of label cover

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Naoto Ohsaka
{"title":"On approximate reconfigurability of label cover","authors":"Naoto Ohsaka","doi":"10.1016/j.ipl.2024.106556","DOIUrl":null,"url":null,"abstract":"<div><div>Given a two-prover game <em>G</em> and its two satisfying labelings <span><math><msub><mrow><mi>ψ</mi></mrow><mrow><mi>ini</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>ψ</mi></mrow><mrow><mi>tar</mi></mrow></msub></math></span>, the <span>Label Cover Reconfiguration</span> problem asks whether <span><math><msub><mrow><mi>ψ</mi></mrow><mrow><mi>ini</mi></mrow></msub></math></span> can be transformed into <span><math><msub><mrow><mi>ψ</mi></mrow><mrow><mi>tar</mi></mrow></msub></math></span> by repeatedly changing the label of a single vertex while preserving any intermediate labeling satisfying <em>G</em>. We consider its optimization version by relaxing the feasibility of labelings, referred to as <span>Maxmin Label Cover Reconfiguration</span>: We are allowed to pass through any <em>non-satisfying</em> labelings, but required to maximize the “soundness error,” which is defined as the <em>minimum</em> fraction of satisfied edges during transformation from <span><math><msub><mrow><mi>ψ</mi></mrow><mrow><mi>ini</mi></mrow></msub></math></span> to <span><math><msub><mrow><mi>ψ</mi></mrow><mrow><mi>tar</mi></mrow></msub></math></span>. Since the parallel repetition theorem of Raz (1998) <span><span>[32]</span></span>, which implies <figure><img></figure>-hardness of approximating <span>Label Cover</span> within any constant factor, gives strong inapproximability results for many <figure><img></figure>-hard problems, one may think of using <span>Maxmin Label Cover Reconfiguration</span> to derive inapproximability results for reconfiguration problems. We prove the following results on <span>Maxmin Label Cover Reconfiguration</span>, which display different trends from those of <span>Label Cover</span> and the parallel repetition theorem:<ul><li><span>•</span><span><div><span>Maxmin Label Cover Reconfiguration</span> can be approximated within a factor of <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>−</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span> for some restricted graph classes, including biregular graphs, balanced bipartite graphs with no isolated vertices, and superconstant average degree graphs.</div></span></li><li><span>•</span><span><div>A “naive” parallel repetition of <span>Maxmin Label Cover Reconfiguration</span> does not decrease the soundness error for <em>every</em> two-prover game.</div></span></li><li><span>•</span><span><div><span>Label Cover Reconfiguration</span> on <em>projection games</em> can be decided in polynomial time.</div></span></li></ul> Our results suggest that a reconfiguration analogue of the parallel repetition theorem is unlikely.</div></div>","PeriodicalId":56290,"journal":{"name":"Information Processing Letters","volume":"189 ","pages":"Article 106556"},"PeriodicalIF":0.7000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020019024000863","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Given a two-prover game G and its two satisfying labelings ψini and ψtar, the Label Cover Reconfiguration problem asks whether ψini can be transformed into ψtar by repeatedly changing the label of a single vertex while preserving any intermediate labeling satisfying G. We consider its optimization version by relaxing the feasibility of labelings, referred to as Maxmin Label Cover Reconfiguration: We are allowed to pass through any non-satisfying labelings, but required to maximize the “soundness error,” which is defined as the minimum fraction of satisfied edges during transformation from ψini to ψtar. Since the parallel repetition theorem of Raz (1998) [32], which implies
-hardness of approximating Label Cover within any constant factor, gives strong inapproximability results for many
-hard problems, one may think of using Maxmin Label Cover Reconfiguration to derive inapproximability results for reconfiguration problems. We prove the following results on Maxmin Label Cover Reconfiguration, which display different trends from those of Label Cover and the parallel repetition theorem:
  • Maxmin Label Cover Reconfiguration can be approximated within a factor of 14o(1) for some restricted graph classes, including biregular graphs, balanced bipartite graphs with no isolated vertices, and superconstant average degree graphs.
  • A “naive” parallel repetition of Maxmin Label Cover Reconfiguration does not decrease the soundness error for every two-prover game.
  • Label Cover Reconfiguration on projection games can be decided in polynomial time.
Our results suggest that a reconfiguration analogue of the parallel repetition theorem is unlikely.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information Processing Letters
Information Processing Letters 工程技术-计算机:信息系统
CiteScore
1.80
自引率
0.00%
发文量
70
审稿时长
7.3 months
期刊介绍: Information Processing Letters invites submission of original research articles that focus on fundamental aspects of information processing and computing. This naturally includes work in the broadly understood field of theoretical computer science; although papers in all areas of scientific inquiry will be given consideration, provided that they describe research contributions credibly motivated by applications to computing and involve rigorous methodology. High quality experimental papers that address topics of sufficiently broad interest may also be considered. Since its inception in 1971, Information Processing Letters has served as a forum for timely dissemination of short, concise and focused research contributions. Continuing with this tradition, and to expedite the reviewing process, manuscripts are generally limited in length to nine pages when they appear in print.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信