A simple division-free algorithm for computing Pfaffians

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Adam J. Przeździecki
{"title":"A simple division-free algorithm for computing Pfaffians","authors":"Adam J. Przeździecki","doi":"10.1016/j.ipl.2024.106550","DOIUrl":null,"url":null,"abstract":"<div><div>We present a very simple algorithm for computing Pfaffians which uses no division operations. Essentially, it amounts to iterating matrix multiplication and truncation.</div><div>Its complexity, for a <span><math><mn>2</mn><mi>n</mi><mo>×</mo><mn>2</mn><mi>n</mi></math></span> matrix, is <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mi>M</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>)</mo></math></span>, where <span><math><mi>M</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> is the cost of matrix multiplication. In case of a sparse matrix, <span><math><mi>M</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> is the cost of the dense-sparse matrix multiplication.</div><div>The algorithm is an adaptation of the Bird algorithm for determinants. We show how to extract, with practically no additional work, the characteristic polynomial and the Pfaffian characteristic polynomial from these algorithms.</div></div>","PeriodicalId":56290,"journal":{"name":"Information Processing Letters","volume":"189 ","pages":"Article 106550"},"PeriodicalIF":0.7000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020019024000802","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

We present a very simple algorithm for computing Pfaffians which uses no division operations. Essentially, it amounts to iterating matrix multiplication and truncation.
Its complexity, for a 2n×2n matrix, is O(nM(n)), where M(n) is the cost of matrix multiplication. In case of a sparse matrix, M(n) is the cost of the dense-sparse matrix multiplication.
The algorithm is an adaptation of the Bird algorithm for determinants. We show how to extract, with practically no additional work, the characteristic polynomial and the Pfaffian characteristic polynomial from these algorithms.
一个简单的无除法计算算法
我们提出了一种非常简单的不使用除法运算的法菲数计算算法。本质上,它相当于迭代矩阵乘法和截断。对于2n×2n矩阵,它的复杂度是O(nM(n)),其中M(n)是矩阵乘法的代价。对于稀疏矩阵,M(n)是密稀疏矩阵乘法的代价。该算法是Bird算法对行列式的改进。我们展示了如何在几乎没有额外工作的情况下,从这些算法中提取特征多项式和Pfaffian特征多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information Processing Letters
Information Processing Letters 工程技术-计算机:信息系统
CiteScore
1.80
自引率
0.00%
发文量
70
审稿时长
7.3 months
期刊介绍: Information Processing Letters invites submission of original research articles that focus on fundamental aspects of information processing and computing. This naturally includes work in the broadly understood field of theoretical computer science; although papers in all areas of scientific inquiry will be given consideration, provided that they describe research contributions credibly motivated by applications to computing and involve rigorous methodology. High quality experimental papers that address topics of sufficiently broad interest may also be considered. Since its inception in 1971, Information Processing Letters has served as a forum for timely dissemination of short, concise and focused research contributions. Continuing with this tradition, and to expedite the reviewing process, manuscripts are generally limited in length to nine pages when they appear in print.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信