Foraminiferal denitrification and deep bioirrigation influence benthic biogeochemical cycling in a seasonally hypoxic fjord

IF 4.5 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Subhadeep Rakshit , Nicolaas Glock , Andrew W. Dale , Maria M.L. Armstrong , Florian Scholz , Andrè Mutzberg , Christopher K. Algar
{"title":"Foraminiferal denitrification and deep bioirrigation influence benthic biogeochemical cycling in a seasonally hypoxic fjord","authors":"Subhadeep Rakshit ,&nbsp;Nicolaas Glock ,&nbsp;Andrew W. Dale ,&nbsp;Maria M.L. Armstrong ,&nbsp;Florian Scholz ,&nbsp;Andrè Mutzberg ,&nbsp;Christopher K. Algar","doi":"10.1016/j.gca.2024.10.010","DOIUrl":null,"url":null,"abstract":"<div><div>Benthic macro- and micro-biota often play significant roles in controlling the biogeochemical dynamics in sediments. Their activity can be influenced by oxygen availability and impacted by the rise in global hypoxia in coastal regions over the last decades. To understand how these organisms interact with coastal hypoxia and influence sediment biogeochemistry, we undertook a study of early diagenesis in Bedford Basin, a seasonally hypoxic fjord on the West Atlantic coast in Nova Scotia, Canada, using a combination of observations and reaction-transport modeling. We observed that the seafloor was a source of ammonium and sink of nitrate with average fluxes of 2.2 ± 1.8 and −0.9 ± 0.7 mmol m<sup>−2</sup> d<sup>−1</sup> respectively. The diffusive oxygen uptake was 14 ± 4.6 mmol m<sup>−2</sup> d<sup>−1</sup> and the total organic carbon content in collected sediment cores was 5–7 % with a C/N ratio of ∼10. The pyrite content increased steadily from 0.5 wt% Fe at surface to ∼2 wt% Fe at 20 cm depth. Hydrogen sulfide was negligible down to 25 cm depth most of the time. The sediment was inhabited by tube-forming polychaete <em>Spiochaetopterus</em> sp. that formed tubes up to ∼30 cm in length. The living foraminiferal assemblage in the top 5 cm sediment was found to be dominated (&gt;85 %) by nitrate-storing and denitrifying benthic foraminifera <em>Stainforthia fusiformis</em>. These observations were used to develop and constrain a biogeochemical reaction-transport model. The model results suggest that the observed decrease in porewater concentrations of ammonium and dissolved inorganic carbon below 5 cm depth, was due to deep bioirrigation by tubeworms, accounting for almost 50 % of the benthic efflux. The model further revealed that the deep bioirrigation along with bioturbation and iron cycling prevented accumulation of free sulfide in the top 25 cm sediment despite oxygen penetration depths of ∼1 mm. Modelled organic carbon and nitrogen deposition was 25.2 and 2.9 mmol m<sup>−2</sup> d<sup>−1</sup> with burial efficiencies of 23 % and 17 %, respectively. The model indicated a total denitrification rate of 1.3 mmol N m<sup>−2</sup> d<sup>−1</sup> that was largely (∼70 %) driven by benthic foraminifera. This study reports the first evidence of foraminiferal denitrification in western Atlantic coastal sediments, and suggests that eukaryote mediated denitrification is an important driver of sediment N-loss in seasonally hypoxic environments, a process that has been traditionally assumed to be carried out by prokaryotic microbes.</div></div>","PeriodicalId":327,"journal":{"name":"Geochimica et Cosmochimica Acta","volume":"388 ","pages":"Pages 268-282"},"PeriodicalIF":4.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochimica et Cosmochimica Acta","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016703724005271","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Benthic macro- and micro-biota often play significant roles in controlling the biogeochemical dynamics in sediments. Their activity can be influenced by oxygen availability and impacted by the rise in global hypoxia in coastal regions over the last decades. To understand how these organisms interact with coastal hypoxia and influence sediment biogeochemistry, we undertook a study of early diagenesis in Bedford Basin, a seasonally hypoxic fjord on the West Atlantic coast in Nova Scotia, Canada, using a combination of observations and reaction-transport modeling. We observed that the seafloor was a source of ammonium and sink of nitrate with average fluxes of 2.2 ± 1.8 and −0.9 ± 0.7 mmol m−2 d−1 respectively. The diffusive oxygen uptake was 14 ± 4.6 mmol m−2 d−1 and the total organic carbon content in collected sediment cores was 5–7 % with a C/N ratio of ∼10. The pyrite content increased steadily from 0.5 wt% Fe at surface to ∼2 wt% Fe at 20 cm depth. Hydrogen sulfide was negligible down to 25 cm depth most of the time. The sediment was inhabited by tube-forming polychaete Spiochaetopterus sp. that formed tubes up to ∼30 cm in length. The living foraminiferal assemblage in the top 5 cm sediment was found to be dominated (>85 %) by nitrate-storing and denitrifying benthic foraminifera Stainforthia fusiformis. These observations were used to develop and constrain a biogeochemical reaction-transport model. The model results suggest that the observed decrease in porewater concentrations of ammonium and dissolved inorganic carbon below 5 cm depth, was due to deep bioirrigation by tubeworms, accounting for almost 50 % of the benthic efflux. The model further revealed that the deep bioirrigation along with bioturbation and iron cycling prevented accumulation of free sulfide in the top 25 cm sediment despite oxygen penetration depths of ∼1 mm. Modelled organic carbon and nitrogen deposition was 25.2 and 2.9 mmol m−2 d−1 with burial efficiencies of 23 % and 17 %, respectively. The model indicated a total denitrification rate of 1.3 mmol N m−2 d−1 that was largely (∼70 %) driven by benthic foraminifera. This study reports the first evidence of foraminiferal denitrification in western Atlantic coastal sediments, and suggests that eukaryote mediated denitrification is an important driver of sediment N-loss in seasonally hypoxic environments, a process that has been traditionally assumed to be carried out by prokaryotic microbes.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geochimica et Cosmochimica Acta
Geochimica et Cosmochimica Acta 地学-地球化学与地球物理
CiteScore
9.60
自引率
14.00%
发文量
437
审稿时长
6 months
期刊介绍: Geochimica et Cosmochimica Acta publishes research papers in a wide range of subjects in terrestrial geochemistry, meteoritics, and planetary geochemistry. The scope of the journal includes: 1). Physical chemistry of gases, aqueous solutions, glasses, and crystalline solids 2). Igneous and metamorphic petrology 3). Chemical processes in the atmosphere, hydrosphere, biosphere, and lithosphere of the Earth 4). Organic geochemistry 5). Isotope geochemistry 6). Meteoritics and meteorite impacts 7). Lunar science; and 8). Planetary geochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信