Abdul Malik Sultan , Alishba Mushtaq , Dean Chou , Hamood Ur Rehman , Hameed Ashraf , Aziz Ullah Awan
{"title":"Observational analysis of gravitational baryogenesis constraints in Einstein-Æther gravity","authors":"Abdul Malik Sultan , Alishba Mushtaq , Dean Chou , Hamood Ur Rehman , Hameed Ashraf , Aziz Ullah Awan","doi":"10.1016/j.jheap.2024.11.018","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we investigate the mystery of matter dominance over antimatter through gravitational baryogenesis in context of Einstein-Æther gravity. This study aims to focus on the phenomenon of baryon asymmetry produced in the universe a while after the Big Bang. The supremacy of matter over antimatter is quantified by <span><math><mfrac><mrow><msub><mrow><mi>η</mi></mrow><mrow><mi>B</mi></mrow></msub></mrow><mrow><mi>s</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><msub><mrow><mi>η</mi></mrow><mrow><mi>B</mi></mrow></msub><mo>−</mo><msub><mrow><mi>η</mi></mrow><mrow><mover><mrow><mi>B</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow></msub></mrow><mrow><mi>s</mi></mrow></mfrac></math></span> where <em>s</em> is entropy of the universe and <span><math><msub><mrow><mi>η</mi></mrow><mrow><mi>B</mi></mrow></msub><mo>(</mo><msub><mrow><mi>η</mi></mrow><mrow><mover><mrow><mi>B</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow></msub><mo>)</mo></math></span> is number of baryon (anti baryon). We take four different models from Einstein-Æther gravity to analyze the ratio <span><math><mfrac><mrow><msub><mrow><mi>η</mi></mrow><mrow><mi>B</mi></mrow></msub></mrow><mrow><mi>s</mi></mrow></mfrac></math></span> and compared our outcomes with the observational bounds. We found this ratio is consistent with the observational data. For a further verification, we examine the Hubble parameter (<em>H</em>) for each model and compared them with observational values, finding a high degree of agreement. Additionally, we perform Chi-square (<span><math><msup><mrow><mi>χ</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>) test on Hubble parameter for each model to assess their compatibility with recent observational data. Furthermore, we compared our findings with the ΛCDM model and the latest Pantheon+SH0ES observational data. This comparison unveiled a reasonable level of consistency among the considered models and the observational data.</div></div>","PeriodicalId":54265,"journal":{"name":"Journal of High Energy Astrophysics","volume":"45 ","pages":"Pages 135-145"},"PeriodicalIF":10.2000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214404824001319","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, we investigate the mystery of matter dominance over antimatter through gravitational baryogenesis in context of Einstein-Æther gravity. This study aims to focus on the phenomenon of baryon asymmetry produced in the universe a while after the Big Bang. The supremacy of matter over antimatter is quantified by where s is entropy of the universe and is number of baryon (anti baryon). We take four different models from Einstein-Æther gravity to analyze the ratio and compared our outcomes with the observational bounds. We found this ratio is consistent with the observational data. For a further verification, we examine the Hubble parameter (H) for each model and compared them with observational values, finding a high degree of agreement. Additionally, we perform Chi-square () test on Hubble parameter for each model to assess their compatibility with recent observational data. Furthermore, we compared our findings with the ΛCDM model and the latest Pantheon+SH0ES observational data. This comparison unveiled a reasonable level of consistency among the considered models and the observational data.
期刊介绍:
The journal welcomes manuscripts on theoretical models, simulations, and observations of highly energetic astrophysical objects both in our Galaxy and beyond. Among those, black holes at all scales, neutron stars, pulsars and their nebula, binaries, novae and supernovae, their remnants, active galaxies, and clusters are just a few examples. The journal will consider research across the whole electromagnetic spectrum, as well as research using various messengers, such as gravitational waves or neutrinos. Effects of high-energy phenomena on cosmology and star-formation, results from dedicated surveys expanding the knowledge of extreme environments, and astrophysical implications of dark matter are also welcomed topics.