Predicting the impact of missense mutations on an unresolved protein’s stability, structure, and function: A case study of Alzheimer’s disease-associated TREM2 R47H variant
{"title":"Predicting the impact of missense mutations on an unresolved protein’s stability, structure, and function: A case study of Alzheimer’s disease-associated TREM2 R47H variant","authors":"Joshua Pillai , Kijung Sung , Chengbiao Wu","doi":"10.1016/j.csbj.2025.01.024","DOIUrl":null,"url":null,"abstract":"<div><div>AlphaFold2 (AF2) has spurred a revolution in predicting unresolved structures of wild-type proteins with high accuracy. However, AF2 falls short of predicting the effects of missense mutations on unresolved protein structures that may be informative to efforts in personalized medicine. Over the last decade, countless in-silico methods have been developed to predict the pathogenicity of point mutations on resolved structures, but no studies have evaluated their capabilities on unresolved protein structures predicted by AF2. Herein, we investigated Alzheimer's disease (AD)-causing coding variants of the triggering receptor expressed on myeloid cells 2 (TREM2) receptor using in-silico mutagenesis techniques on the AF2-predicted structure. We first demonstrated that the predicted structure retained a high accuracy in critical regions of the extracellular domain and subsequently validated the in-silico mutagenesis methods by evaluating the effects of the strongest risk variant R47H of TREM2. After validation of the R47H variant, we predicted the molecular basis and effects on protein stability and ligand-binding affinity of the R62H and D87N variants that remain unknown in current literature. By comparing it with the R47H variant, our analysis reveals that R62H and D87N variants exert a much less pronounced effect on the structural stability of TREM2. These in-silico findings show the possibility that the R62H and D87N mutations are likely less pathogenic than the R47H AD. Lastly, we investigated the Nasu-Hakola (NHD)-causing Y38C and V126G TREM2 as a comparison and found that they imposed greater destabilization compared to AD-causing variants. We believe that the in-silico mutagenesis methods described here can be applied broadly to evaluate the ever-growing numbers of protein mutations/variants discovered in human genetics study for their potential in diseases, ultimately facilitating personalized medicine.</div></div>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":"27 ","pages":"Pages 564-574"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2001037025000248","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
AlphaFold2 (AF2) has spurred a revolution in predicting unresolved structures of wild-type proteins with high accuracy. However, AF2 falls short of predicting the effects of missense mutations on unresolved protein structures that may be informative to efforts in personalized medicine. Over the last decade, countless in-silico methods have been developed to predict the pathogenicity of point mutations on resolved structures, but no studies have evaluated their capabilities on unresolved protein structures predicted by AF2. Herein, we investigated Alzheimer's disease (AD)-causing coding variants of the triggering receptor expressed on myeloid cells 2 (TREM2) receptor using in-silico mutagenesis techniques on the AF2-predicted structure. We first demonstrated that the predicted structure retained a high accuracy in critical regions of the extracellular domain and subsequently validated the in-silico mutagenesis methods by evaluating the effects of the strongest risk variant R47H of TREM2. After validation of the R47H variant, we predicted the molecular basis and effects on protein stability and ligand-binding affinity of the R62H and D87N variants that remain unknown in current literature. By comparing it with the R47H variant, our analysis reveals that R62H and D87N variants exert a much less pronounced effect on the structural stability of TREM2. These in-silico findings show the possibility that the R62H and D87N mutations are likely less pathogenic than the R47H AD. Lastly, we investigated the Nasu-Hakola (NHD)-causing Y38C and V126G TREM2 as a comparison and found that they imposed greater destabilization compared to AD-causing variants. We believe that the in-silico mutagenesis methods described here can be applied broadly to evaluate the ever-growing numbers of protein mutations/variants discovered in human genetics study for their potential in diseases, ultimately facilitating personalized medicine.
期刊介绍:
Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to:
Structure and function of proteins, nucleic acids and other macromolecules
Structure and function of multi-component complexes
Protein folding, processing and degradation
Enzymology
Computational and structural studies of plant systems
Microbial Informatics
Genomics
Proteomics
Metabolomics
Algorithms and Hypothesis in Bioinformatics
Mathematical and Theoretical Biology
Computational Chemistry and Drug Discovery
Microscopy and Molecular Imaging
Nanotechnology
Systems and Synthetic Biology