Blow-up Whitney forms, shadow forms, and Poisson processes

IF 1.4 Q2 MATHEMATICS, APPLIED
Yakov Berchenko-Kogan , Evan S. Gawlik
{"title":"Blow-up Whitney forms, shadow forms, and Poisson processes","authors":"Yakov Berchenko-Kogan ,&nbsp;Evan S. Gawlik","doi":"10.1016/j.rinam.2024.100529","DOIUrl":null,"url":null,"abstract":"<div><div>The Whitney forms on a simplex <span><math><mi>T</mi></math></span> admit high-order generalizations that have received a great deal of attention in numerical analysis. Less well-known are the <em>shadow forms</em> of Brasselet, Goresky, and MacPherson. These forms generalize the Whitney forms, but have rational coefficients, allowing singularities near the faces of <span><math><mi>T</mi></math></span>. Motivated by numerical problems that exhibit these kinds of singularities, we introduce degrees of freedom for the shadow <span><math><mi>k</mi></math></span>-forms that are well-suited for finite element implementations. In particular, we show that the degrees of freedom for the shadow forms are given by integration over the <span><math><mi>k</mi></math></span>-dimensional faces of the <em>blow-up</em> <span><math><mover><mrow><mi>T</mi></mrow><mrow><mo>̃</mo></mrow></mover></math></span> of the simplex <span><math><mi>T</mi></math></span>. Consequently, we obtain an isomorphism between the cohomology of the complex of shadow forms and the cellular cohomology of <span><math><mover><mrow><mi>T</mi></mrow><mrow><mo>̃</mo></mrow></mover></math></span>, which vanishes except in degree zero. Additionally, we discover a surprising probabilistic interpretation of shadow forms in terms of Poisson processes. This perspective simplifies several proofs and gives a way of computing bases for the shadow forms using a straightforward combinatorial calculation.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"25 ","pages":"Article 100529"},"PeriodicalIF":1.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000992","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The Whitney forms on a simplex T admit high-order generalizations that have received a great deal of attention in numerical analysis. Less well-known are the shadow forms of Brasselet, Goresky, and MacPherson. These forms generalize the Whitney forms, but have rational coefficients, allowing singularities near the faces of T. Motivated by numerical problems that exhibit these kinds of singularities, we introduce degrees of freedom for the shadow k-forms that are well-suited for finite element implementations. In particular, we show that the degrees of freedom for the shadow forms are given by integration over the k-dimensional faces of the blow-up T̃ of the simplex T. Consequently, we obtain an isomorphism between the cohomology of the complex of shadow forms and the cellular cohomology of T̃, which vanishes except in degree zero. Additionally, we discover a surprising probabilistic interpretation of shadow forms in terms of Poisson processes. This perspective simplifies several proofs and gives a way of computing bases for the shadow forms using a straightforward combinatorial calculation.
放大惠特尼形状,阴影形状和泊松过程
单纯形T上的惠特尼形式允许在数值分析中得到大量关注的高阶推广。不太为人所知的是布拉塞莱特、戈尔斯基和麦克弗森的影子。这些形式推广了惠特尼形式,但具有有理系数,允许在t面附近出现奇点。受到表现出这些奇点的数值问题的启发,我们引入了非常适合于有限元实现的阴影k形式的自由度。特别地,我们证明了阴影形式的自由度是由单纯形T的放大T的k维面上的积分给出的。因此,我们得到了阴影形式复合体的上同构与T的元胞上同构之间的同构,除了在0度处消失。此外,我们发现了一个令人惊讶的概率解释阴影形式的泊松过程。这种观点简化了几个证明,并给出了一种使用直接组合计算的阴影形式的计算基础的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信