(2+1)-dimensional discrete exterior discretization of a general wave model in Minkowski spacetime

IF 1.4 Q2 MATHEMATICS, APPLIED
Sanna Mönkölä, Jukka Räbinä, Tytti Saksa, Tuomo Rossi
{"title":"(2+1)-dimensional discrete exterior discretization of a general wave model in Minkowski spacetime","authors":"Sanna Mönkölä,&nbsp;Jukka Räbinä,&nbsp;Tytti Saksa,&nbsp;Tuomo Rossi","doi":"10.1016/j.rinam.2024.100528","DOIUrl":null,"url":null,"abstract":"<div><div>We present a differential geometry-based model for linear wave equations in <span><math><mrow><mo>(</mo><mn>2</mn><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span>-dimensional spacetime. This model encompasses acoustic, elastic, and electromagnetic waves and is also applicable in quantum mechanical simulations. For discretization, we introduce a spacetime extension of discrete exterior calculus, resulting in a leapfrog-style time evolution. The scheme further supports numerical simulations of moving and deforming domains. The numerical tests presented in this paper demonstrate the method’s stability limits and computational efficiency.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"25 ","pages":"Article 100528"},"PeriodicalIF":1.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We present a differential geometry-based model for linear wave equations in (2+1)-dimensional spacetime. This model encompasses acoustic, elastic, and electromagnetic waves and is also applicable in quantum mechanical simulations. For discretization, we introduce a spacetime extension of discrete exterior calculus, resulting in a leapfrog-style time evolution. The scheme further supports numerical simulations of moving and deforming domains. The numerical tests presented in this paper demonstrate the method’s stability limits and computational efficiency.
闵可夫斯基时空中一般波模型的(2+1)维离散外离散化
我们提出了一个基于微分几何的(2+1)维时空线性波动方程模型。该模型包括声波、弹性波和电磁波,也适用于量子力学模拟。对于离散化,我们引入了离散外演算的时空扩展,得到了一个跨越式的时间演化。该方案进一步支持移动和变形区域的数值模拟。文中的数值试验证明了该方法的稳定性、局限性和计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信