Sanna Mönkölä, Jukka Räbinä, Tytti Saksa, Tuomo Rossi
{"title":"(2+1)-dimensional discrete exterior discretization of a general wave model in Minkowski spacetime","authors":"Sanna Mönkölä, Jukka Räbinä, Tytti Saksa, Tuomo Rossi","doi":"10.1016/j.rinam.2024.100528","DOIUrl":null,"url":null,"abstract":"<div><div>We present a differential geometry-based model for linear wave equations in <span><math><mrow><mo>(</mo><mn>2</mn><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span>-dimensional spacetime. This model encompasses acoustic, elastic, and electromagnetic waves and is also applicable in quantum mechanical simulations. For discretization, we introduce a spacetime extension of discrete exterior calculus, resulting in a leapfrog-style time evolution. The scheme further supports numerical simulations of moving and deforming domains. The numerical tests presented in this paper demonstrate the method’s stability limits and computational efficiency.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"25 ","pages":"Article 100528"},"PeriodicalIF":1.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We present a differential geometry-based model for linear wave equations in -dimensional spacetime. This model encompasses acoustic, elastic, and electromagnetic waves and is also applicable in quantum mechanical simulations. For discretization, we introduce a spacetime extension of discrete exterior calculus, resulting in a leapfrog-style time evolution. The scheme further supports numerical simulations of moving and deforming domains. The numerical tests presented in this paper demonstrate the method’s stability limits and computational efficiency.