Efficient numerical methods to approach solutions of quasi-static contact problems

IF 1.4 Q2 MATHEMATICS, APPLIED
Lionel Ouya Ndjansi, Laurent Tchoualag, Jean Louis Woukeng
{"title":"Efficient numerical methods to approach solutions of quasi-static contact problems","authors":"Lionel Ouya Ndjansi,&nbsp;Laurent Tchoualag,&nbsp;Jean Louis Woukeng","doi":"10.1016/j.rinam.2024.100535","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a new boundary element method and generalized Newton method for the resolution of quasi-static contact problems with friction in 2D is presented. The time discretization of the model and the mixed duality-fixed point formulation combined with augmented lagrangian approach are considered. This leads at each time step, to a system of static contact problem with Coulomb friction, where the study is carried out by the dual–primal active set method. After proving the well-posedness of the regularized dual problem and convergence to the solutions of the static problem, the generalized Newton method based on active set strategy method and fixed point method are constructed. An error estimate for the Galerkin discretization is established and some numerical examples are presented.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"25 ","pages":"Article 100535"},"PeriodicalIF":1.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424001055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a new boundary element method and generalized Newton method for the resolution of quasi-static contact problems with friction in 2D is presented. The time discretization of the model and the mixed duality-fixed point formulation combined with augmented lagrangian approach are considered. This leads at each time step, to a system of static contact problem with Coulomb friction, where the study is carried out by the dual–primal active set method. After proving the well-posedness of the regularized dual problem and convergence to the solutions of the static problem, the generalized Newton method based on active set strategy method and fixed point method are constructed. An error estimate for the Galerkin discretization is established and some numerical examples are presented.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信