Two-grid mixed finite element method combined with the BDF2-θ for a two-dimensional nonlinear fractional pseudo-hyperbolic wave equation

IF 1.4 Q2 MATHEMATICS, APPLIED
Yan Wang, Yining Yang, Nian Wang, Hong Li, Yang Liu
{"title":"Two-grid mixed finite element method combined with the BDF2-θ for a two-dimensional nonlinear fractional pseudo-hyperbolic wave equation","authors":"Yan Wang,&nbsp;Yining Yang,&nbsp;Nian Wang,&nbsp;Hong Li,&nbsp;Yang Liu","doi":"10.1016/j.rinam.2024.100530","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, a fast two-grid mixed finite element (T-GMFE) algorithm based on a time second-order discrete scheme with parameter <span><math><mi>θ</mi></math></span> is considered to numerically solve a class of two-dimensional nonlinear fractional pseudo-hyperbolic wave models. The weighted and shifted Grünwald difference (WSGD) formula is used to approximate the fractional time derivative at time <span><math><msub><mrow><mi>t</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>θ</mi></mrow></msub></math></span>, and the spatial direction is approximated by a two-grid <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-Galerkin MFE method. The error estimates in both <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-norm for the fully discrete T-GMFE system are proved. Further, a modified T-GMFE scheme is proposed and the optimal error results are provided. Finally, computing results show the presented T-GMFE method can save computing time and improve the computational efficiency.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"25 ","pages":"Article 100530"},"PeriodicalIF":1.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424001006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, a fast two-grid mixed finite element (T-GMFE) algorithm based on a time second-order discrete scheme with parameter θ is considered to numerically solve a class of two-dimensional nonlinear fractional pseudo-hyperbolic wave models. The weighted and shifted Grünwald difference (WSGD) formula is used to approximate the fractional time derivative at time tnθ, and the spatial direction is approximated by a two-grid H1-Galerkin MFE method. The error estimates in both L2 and H1-norm for the fully discrete T-GMFE system are proved. Further, a modified T-GMFE scheme is proposed and the optimal error results are provided. Finally, computing results show the presented T-GMFE method can save computing time and improve the computational efficiency.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信