A hybrid method based on the classical/piecewise Chebyshev cardinal functions for multi-dimensional fractional Rayleigh–Stokes equations

IF 1.4 Q2 MATHEMATICS, APPLIED
M. Hosseininia , M.H. Heydari , D. Baleanu , M. Bayram
{"title":"A hybrid method based on the classical/piecewise Chebyshev cardinal functions for multi-dimensional fractional Rayleigh–Stokes equations","authors":"M. Hosseininia ,&nbsp;M.H. Heydari ,&nbsp;D. Baleanu ,&nbsp;M. Bayram","doi":"10.1016/j.rinam.2025.100541","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a numerical hybrid strategy for deriving approximate solutions to the one- and two-dimensional fractional Rayleigh–Stokes equations involving the Caputo derivative. This scheme mutually utilizes the classical and piecewise Chebyshev cardinal functions as basis functions. To this end, the operational matrices of the ordinary integral and fractional derivative of the piecewise Chebyshev cardinal functions, along with the ordinary and partial derivatives of the one- and two-variable Chebyshev cardinal functions, are derived. To create the desired approach by considering a hybrid expansion of the solution of the problem using the Chebyshev cardinal functions (for the spatial variable) and piecewise Chebyshev cardinal functions (for the temporal variable), and employing the aforementioned operational matrices, solving the problem under consideration turns into solving an algebraic system of linear equations. The convergence analysis of the established method is examined both theoretically and numerically. The accuracy and validity of the developed scheme are examined by solving several numerical examples.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"25 ","pages":"Article 100541"},"PeriodicalIF":1.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037425000056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a numerical hybrid strategy for deriving approximate solutions to the one- and two-dimensional fractional Rayleigh–Stokes equations involving the Caputo derivative. This scheme mutually utilizes the classical and piecewise Chebyshev cardinal functions as basis functions. To this end, the operational matrices of the ordinary integral and fractional derivative of the piecewise Chebyshev cardinal functions, along with the ordinary and partial derivatives of the one- and two-variable Chebyshev cardinal functions, are derived. To create the desired approach by considering a hybrid expansion of the solution of the problem using the Chebyshev cardinal functions (for the spatial variable) and piecewise Chebyshev cardinal functions (for the temporal variable), and employing the aforementioned operational matrices, solving the problem under consideration turns into solving an algebraic system of linear equations. The convergence analysis of the established method is examined both theoretically and numerically. The accuracy and validity of the developed scheme are examined by solving several numerical examples.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信