Pilot study: Initial investigation suggests differences in EMT-associated gene expression in breast tumor regions

IF 4.4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Kylie L. King , Hamed Abdollahi , Zoe Dinkel , Alannah Akins , Homayoun Valafar , Heather Dunn
{"title":"Pilot study: Initial investigation suggests differences in EMT-associated gene expression in breast tumor regions","authors":"Kylie L. King ,&nbsp;Hamed Abdollahi ,&nbsp;Zoe Dinkel ,&nbsp;Alannah Akins ,&nbsp;Homayoun Valafar ,&nbsp;Heather Dunn","doi":"10.1016/j.csbj.2025.01.027","DOIUrl":null,"url":null,"abstract":"<div><div>Triple negative breast cancer (TNBC) is the most aggressive subtype and disproportionately affects African American women. The development of breast cancer is highly associated with interactions between tumor cells and the extracellular matrix (ECM), and recent research suggests that cellular components of the ECM vary between racial groups. This pilot study aimed to evaluate gene expression in TNBC samples from patients who identified as African American and Caucasian using traditional statistical methods and emerging Machine Learning (ML) approaches. ML enables the analysis of complex datasets and the extraction of useful information from small datasets. We selected four regions of interest from tumor biopsy samples and used laser microdissection to extract tissue for gene expression characterization via RT-qPCR. Both parametric and non-parametric statistical analyses identified genes differentially expressed between the two ethnic groups. Out of 40 genes analyzed, 4 were differentially expressed in the edge of tumor (ET) region and 8 in the ECM adjacent to the tumor (ECMT) region. In addition to statistical approach, ML was used to generate decision trees (DT) for a broader analysis of gene expression and ethnicity. Our DT models achieved 83.33 % accuracy and identified the most significant genes, including <em>CD29</em> and <em>EGF</em> from the ET region and <em>SNAI1</em> and <em>CHD2</em> from the ECMT region. All significant genes were analyzed for pathway enrichment using MSigDB and Gene Ontology databases, most notably the epithelial to mesenchymal transition and cell motility pathways. This pilot study highlights key genes of interest that are differentially expressed in African American and Caucasian TNBC samples.</div></div>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":"27 ","pages":"Pages 548-555"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2001037025000273","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Triple negative breast cancer (TNBC) is the most aggressive subtype and disproportionately affects African American women. The development of breast cancer is highly associated with interactions between tumor cells and the extracellular matrix (ECM), and recent research suggests that cellular components of the ECM vary between racial groups. This pilot study aimed to evaluate gene expression in TNBC samples from patients who identified as African American and Caucasian using traditional statistical methods and emerging Machine Learning (ML) approaches. ML enables the analysis of complex datasets and the extraction of useful information from small datasets. We selected four regions of interest from tumor biopsy samples and used laser microdissection to extract tissue for gene expression characterization via RT-qPCR. Both parametric and non-parametric statistical analyses identified genes differentially expressed between the two ethnic groups. Out of 40 genes analyzed, 4 were differentially expressed in the edge of tumor (ET) region and 8 in the ECM adjacent to the tumor (ECMT) region. In addition to statistical approach, ML was used to generate decision trees (DT) for a broader analysis of gene expression and ethnicity. Our DT models achieved 83.33 % accuracy and identified the most significant genes, including CD29 and EGF from the ET region and SNAI1 and CHD2 from the ECMT region. All significant genes were analyzed for pathway enrichment using MSigDB and Gene Ontology databases, most notably the epithelial to mesenchymal transition and cell motility pathways. This pilot study highlights key genes of interest that are differentially expressed in African American and Caucasian TNBC samples.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational and structural biotechnology journal
Computational and structural biotechnology journal Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
9.30
自引率
3.30%
发文量
540
审稿时长
6 weeks
期刊介绍: Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to: Structure and function of proteins, nucleic acids and other macromolecules Structure and function of multi-component complexes Protein folding, processing and degradation Enzymology Computational and structural studies of plant systems Microbial Informatics Genomics Proteomics Metabolomics Algorithms and Hypothesis in Bioinformatics Mathematical and Theoretical Biology Computational Chemistry and Drug Discovery Microscopy and Molecular Imaging Nanotechnology Systems and Synthetic Biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信